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The Art Gallery problem

• Art gallery: P ⊂ R2, a simple orthogonal polygon

• Point guard: fixed point g ∈ P, has 360◦ line of sight vision

• Objective: place guards in the gallery so that any point in
P is seen by at least one of the guards

g

P
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Typical art gallery theorems

Give (if possible, sharp) bounds on the number of guards
required to control the gallery as a function of the number of
its vertices.
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The art gallery theorem for orthogonal polygons

Theorem (Kahn, Klawe and Kleitman, 1980)⌊n
4
⌋
guards are sometimes necessary and always sufficient to

cover the interior of a simple orthogonal polygon of n
vertices.

Proof: via convex quadrilateralization.
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Rectangular vision

Does the theorem hold if the guards have rectangular vision?

x

y

Rectangular vision: two points x, y ∈ P have r-vision of each other if
there is an axis-parallel rectangle inside P, containing x and y.
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Partitioning orthogonal polygons

Theorem (Győri and O’Rourke independently (1983, 1984))
Any n-vertex simple orthogonal polygon can be partitioned
into at most

⌊n
4
⌋
at most 6-vertex simple orthogonal polygon

pieces.
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Partitioning orthogonal polygons

Metatheorem
Every (orthogonal) art gallery theorem has an underlying
partition theorem.
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Mobile guards in orthogonal polygons

A mobile guard is an axis-parallel line segment L ⊂ P inside
the art gallery. The guard sees a point x ∈ P iff there is a point
y ∈ L such that x is visible from y.

L

P

x

y

This orthogonal polygon can be covered by one mobile guard
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Art gallery theorem for mobile guards

Theorem (Aggarwal, 1984)⌊ 3n+4
16

⌋
mobile guards are sometimes necessary and always

sufficient to cover the interior of a simple orthogonal
polygon of n vertices.

Two questions of O’Rourke (1987):

• Can crossing patrols be avoided?

• Is it enough that the guards have visibility at the two
endpoints of their patrols?
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Partitioning orthogonal polygons

Theorem (Győri, M, 2016)
Any n-vertex simple orthogonal polygon can be partitioned
into at most ⌊ 3n+4

16 ⌋ at most 8-vertex pieces.

Any at most 8-vertex orthogonal polygon can be covered by one
mobile guard!
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Comparing point guards to mobile guards

Point guard Mobile guard

General polygons
⌊n
3
⌋ ⌊n

4
⌋

Orthogonal polygons
⌊n
4
⌋ ⌊ 3n+4

16
⌋

3/4−→
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Is this 3 : 4 ratio only an extremal
phenomenon?
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Maybe…

• One mobile guard can cover a comb, but the minimum
number of point guards is equal to the number of teeth.

• Restrict mobile guards to only vertical ones (alternatively,
horizontal)!
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Definitions

• p: minimum number of point guards required to control P

• mV: minimum number of mobile guards, whose patrol is a
vertical line segment, required to control P

• mH: minimum number of mobile guards, whose patrol is a
horizontal line segment, required to control P
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Versus

Theorem (Győri, M, 2016)
For any simple orthogonal polygon

mV +mH − 1
p ≥ 3

4 ,

and this result is sharp.
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Sharpness

mV +mH = 13, p = 16

A new block requires 4 more point guards, but only 3 more
vertical + horizontal mobile guards.
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Simply connectedness is essential

For an orthogonal polygon with orthogonal holes, the ratio of
mV +mH and p is not bounded: no two of the black dots can be
covered by a single point guard.

mV +mH = 4k+ 4, but p ≥ k2
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Pixelization graph

v1 v2 v3 v4 v5 v6 v7 v8
h2
h3
h4
h5
h6

h0 h1

P
h0 h1 h2 h3 h4 h5 h6 SH

v1 v2 v3 v4 v5 v6 v7 v8 SV

G

With respect to rectangular vision, it is enough to know the
pixels containing the points
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Point guard ↔ Edge
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Mobile guard ↔ Vertex
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Pixelization graph

v1 v2 v3 v4 v5 v6 v7 v8
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P
h0 h1 h2 h3 h4 h5 h6 SH

v1 v2 v3 v4 v5 v6 v7 v8 SV
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Mobile guard ↔ Vertex
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Pixelization graph

v1 v2 v3 v4 v5 v6 v7 v8
h2
h3
h4
h5
h6

h0 h1

P
h0 h1 h2 h3 h4 h5 h6 SH

v1 v2 v3 v4 v5 v6 v7 v8 SV

G
h3

Rectangular vision (e1 ∩ e2 ̸= ∅)
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Pixelization graph

v1 v2 v3 v4 v5 v6 v7 v8
h2
h3
h4
h5
h6

h0 h1

P
h0 h1 h2 h3 h4 h5 h6 SH

v1 v2 v3 v4 v5 v6 v7 v8 SV

G

v3 v7

h3 h5

Rectangular vision (G[e1 ∪ e2] ∼= C4)
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Pixelization graph

v1 v2 v3 v4 v5 v6 v7 v8
h2
h3
h4
h5
h6

h0 h1

P
h0 h1 h2 h3 h4 h5 h6 SH

v1 v2 v3 v4 v5 v6 v7 v8 SV

G

v1 v4 v7

Vertical mobile guard system ↔ MV ⊆ SV dominating SH
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Translating the problem to the pixelization graph

Orthogonal polygon Pixelation graph

Mobile guard Vertex

Point guard Edge

Simply connected Chordal bipartite (⇒, but ̸⇐)

r-vision of two points e1 ∩ e2 ̸= ∅ or G[e1 ∪ e2] ∼= C4

Horiz. mobile guard cover MH ⊆ SH dominating SV

Covering set of mobile guards Dominating set
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Proof outline — very briefly

• Take G[MH ∪MV], it is chordal bipartite as well

• Recursion: first prove the theorem when G[MH ∪MV]

2-connected, then connected, and lastly when it has
multiple connected components

• The interesting case is when G[MH ∪MV] is 2-connected. If
we only want to prove a constant of 2, then the proof is 7
pages shorter.
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An application of the versus theorem

p ≤ 4
3 (mV +mH − 1)

Theorem (Győri, M, 2016)
For a simple orthogonal polygon given by an ordered list of
its vertices, there is a linear time algorithm finding a solution
to the minimum size horizontal mobile guard problem.
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An application of the versus theorem

Trivial observation: both mV ≤ p and mH ≤ p.

Corollary
An (8/3)-approximation of the minimum size point guard
system for a given orthogonal polygon can be computed in
linear time.
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Questions…?!
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For interested readers…

• Ervin Győri and M., Partitioning orthogonal polygons into
at most 8-vertex ones, with application to an art gallery
theorem Comput. Geom. 59 (2016), 13–25.
https://arxiv.org/abs/1509.05227

• Ervin Győri and M., Mobile vs. point guards, soon to be
submitted (to arXiv as well)

https://arxiv.org/abs/1509.05227


Making the definitions precise

• Degenerate-vision is prohibited

• The vertical and horizontal lines containing a
point/mobile guard may not pass through a vertex of the
polygon.

• These may be assumed without loss of generality, by using
applying the following transformation to the gallery:



Complexity in orthogonal art galleries I.

• Worman, Keil (2007): O
(
n17 · polylog(n)

)
algorithm for

minimum size point guard system (rectangular vision)

• Lingas, Wasylewicz, Żyliński (2012): linear time
3-approximation for minimum size point guard system
(rectangular vision)

• Katz, Morgenstern (2011): finding an minimum size
horizontal mobile guard system is polynomial in
orthogonal polygons without holes (rectangular vision)



Complexity in orthogonal art galleries II.

• Schuchardt, Hecker (1995): finding a minimum size point
guard system is NP-hard in simple orthogonal polygons
(unrestricted vision)

• Durocher, Mehrabi (2013): optimal mobile guard system is
NP-hard for orthogonal polygons with holes (rectangular
vision)

• Biedl, Chan, Lee, Mehrabi, Montecchiani, Vosoughpour
(2016): optimal horizontal mobile guard system is NP-hard
for orthogonal polygons with holes (rectangular vision)



Partitioning orthogonal polygons

Theorem (Hoffmann and Kaufmann, 1991)
Any n-vertex orthogonal polygon with holes can be
partitioned into at most

⌊n
4
⌋
at most 16-vertex simple

orthogonal star pieces.

A 16-vertex orthogonal star.
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