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Abstract

We study the problem of covering simple orthogonal art galleries with rectan-
gular stars. The problem has been shown to be polynomial [9], but to our knowl-
edge, the exponent of the running time is still in the double digits. A linear-time
3-approximation algorithm using a partitioning into staircase shaped regions has
been discovered by [8]. This is a follow-up paper to our recent theoretical result
[5] linking point guards to horizontal mobile guards and vertical mobile guards
(vision is restricted to rectangular vision). The result of this paper is that the algo-
rithm implicitly described by our theoretical result can in fact be run in linear time.
The novelty of the approach is the sparse representation of the pixelation graph of
simple orthogonal polygons and the heavy reliance on so-called horizontal and ver-
tical 𝑅-trees. After translating the problem into graph theory, geometrical insight
is barely needed to verify the correctness of the algorithm.

1 Introduction
Art gallery problems in general ask the minimum number of guards with given power
(for example, static or mobile) and type of vision (line of sight, rectangular vision, etc.)
required to control the gallery. A point guard is a point in the interior of a polygon, and
it covers any point in the closed polygon (the gallery) to which the guard can be joined
by a line segment contained by the closed polygon (line of sight vision). The art gallery
theorem due to Chvátal states that given an 𝑛-vertex simple polygon, ⌊ 𝑛

3 ⌋ point guards
are sufficient and sometimes necessary to cover the closed polygon. In 1980 the sharp
bound for the special case of 𝑛-vertex simple orthogonal polygons was determined to be
⌊ 𝑛

4 ⌋ by Kahn, Klawe, and Kleitman.
Mobile guards were introduced by Avis and Toussaint. A mobile guard patrols a line
segment inside the gallery and sees every point in the gallery which can be seen from at
least one point on its patrol. O’Rourke proved that to cover an 𝑛-vertex simple polygon,
⌊ 𝑛

4 ⌋ mobile guards are sufficient and sometimes necessary. To cover simple orthogonal
polygons, Aggarwal proved that the extremal bound on the number of mobile guards is
⌊ 3𝑛+4

16 ⌋.
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Throughout the paper, we restrict the meaning of orthogonal polygons to axis-parallel
orthogonal polygons. Győri and O’Rourke independently proved that there is a stronger
combinatorial theorem behind the simple orthogonal art gallery theorem: any 𝑛-vertex
simple orthogonal polygon can be partitioned into at most ⌊ 𝑛

4 ⌋ simple orthogonal poly-
gons of at most 6 vertices. Recently, Győri and Mezei proved that Aggarwal’s theorem
can be stated in a stronger form as well: any 𝑛-vertex simple orthogonal polygon can be
partitioned into at most ⌊ 3𝑛+4

16 ⌋ simple orthogonal polygons of at most 8 vertices.
Two points in an orthogonal polygon (using axis-parallel sides) have rectangular or 𝑟-
vision of each other, if there is an axis-parallel rectangle containing both points such that
the rectangle is contained in the closed polygon. A region covered by a point guard inside
the gallery is called an 𝑟-star. The mentioned partitioning theorems have an important
feature in common: the bound on the number of guards required does not change if
vision is restricted to 𝑟-vision. We mention that Katz and Morgenstern [6] introduced
the notion of sliding cameras, which are maximal horizontal or vertical line segments in
the gallery equipped with 𝑟-vision.

For simple orthogonal polygons an optimal point guard system using 𝑟-vision can be
found in polynomial time, a result due to Worman and Keil [9]. The degree of the
polynomial bounding the running time was originally 17, which may be too high for
practical applications. Subsequently, Lingas, Wasylewicz, and Żyliński [8] gave a linear
time 3-approximation algorithm for the problem. Their proof uses partition into staircase
shaped regions, where the problem can be solved exactly in linear time.
In this paper we present the sketch of an algorithm for guarding simple orthogonal poly-
gons with point guards using 𝑟-vision. An advantage of our approach is that it requires
minimal geometrical insight, computation is mostly done on graphs, and there are only
3 subcases to verify.
Let 𝑃 be a simple orthogonal polygon. Let 𝑚𝐻 be the minimum size of a horizontal
mobile guard system of 𝑃 using 𝑟-vision. Define 𝑚𝑉 analogously for vertical mobile
guards. Lastly, let 𝑝 be the minimum size point guard system of 𝑃 using 𝑟-vision. Then

Theorem 1 (Győri and Mezei [5]).

⌊
4(𝑚𝑉 + 𝑚𝐻 − 1)

3 ⌋ ≥ 𝑝.

In [5] it has also been shown that both 𝑚𝐻 and 𝑚𝑉 (and the respective optimal guard
system) can be computed in linear time (if holes are allowed, the problem isNP-hard [1]).
The algorithm only relies on linear time triangulation of polygons by Chazelle [2] and an
efficient least common ancestors algorithm in trees [3]. Using the trivial 𝑝 ≥ 𝑚𝑉 , 𝑚𝐻
inequalities, it is clear that the left hand side is an 8

3 -approximation of 𝑝. The proof
Theorem 1 is constructive. In the following sections we argue that the following holds.

Theorem 2. There is a linear time algorithm which computes a covering set of point
guards of 𝑃 of cardinality at most ⌊ 4(𝑚𝐻 +𝑚𝑉 −1)

3 ⌋.
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2 Preliminaries
In this 4 page extended abstract some technical details such as vision along degenerate
rectangles will be neglected. Let 𝑆𝐻 be the set of internally disjoint rectangles obtained
by cutting horizontally at each reflex vertex of a simple orthogonal polygon 𝑃 . Similarly,
let 𝑆𝑉 be defined analogously for vertical cuts of 𝑃 . We may refer to the elements of
these sets as horizontal and vertical slices, respectively. The horizontal 𝑅-tree 𝑇𝐻 of
𝑃 is equal to

𝑇𝐻 = (𝑆𝐻 , {{ℎ1, ℎ2} ⊆ 𝑆𝐻 ∶ ℎ1 ≠ ℎ2, ℎ1 ∩ ℎ2 ≠ ∅}) ,

i.e., 𝑇𝐻 is the intersection graph of the horizontal slices of 𝑃 . The graph 𝑇𝐻 is indeed a
tree, and we can think of it as a sort of dual of the planar graph determined by the union
of 𝑃 and its horizontal cuts. Similarly, 𝑇𝑉 is the intersection graph of the vertical slices
of 𝑃 . The concept of 𝑅-trees were introduced by [4].
Let 𝐺 be the intersection graph of 𝑆𝐻 and 𝑆𝑉 , i.e.,

𝐺 = (𝑆𝐻 ∪ 𝑆𝑉 , {{ℎ, 𝑣} ∶ ℎ ∈ 𝑆𝐻 , 𝑣 ∈ 𝑆𝑉 , int(ℎ) ∩ int(𝑣) ≠ ∅}) .
In other words, a horizontal and a vertical slice are joined by an edge iff their interiors
intersect. We may also refer to 𝐺 as the pixelation graph of 𝑃 . This structure was
already studied in [7]. Clearly, the set of pixels {∩𝑒 = ℎ ∩ 𝑣 | 𝑒 = {ℎ, 𝑣} ∈ 𝐸(𝐺)} is a
cover of 𝑃 . A cornerstone of the proof is the following lemma (without proof here).
Lemma 3. 𝐺 is a connected chordal bipartite graph (any cycle of length at least 6 has
a chord).
Definition 4 (𝑟-vision of edges). For any 𝑒1, 𝑒2 ∈ 𝐸(𝐺) we say that 𝑒1 and 𝑒2 have 𝑟-
vision of each other iff 𝑒1 ∩ 𝑒2 ≠ ∅ or there exists a 𝐶4 in 𝐺 which contains both 𝑒1 and
𝑒2.
It is easy to see that two points 𝑝1 ∈ int(∩𝑒1) and 𝑝2 ∈ int(∩𝑒2) have 𝑟-vision of each
other if and only if 𝑒1 and 𝑒2 have 𝑟-vision of each other in the above sense. Further-
more, every horizontal slice ℎ ∈ 𝑆𝐻 can be mapped to a maximal horizontal mobile
guard patroling the interior of ℎ (by slightly modifying 𝑃 , we may assume without loss
of generality that every guard can be generated like this). The guard ℎ covers exactly
∪𝑣∈𝑁𝐺(ℎ)𝑣. Thus a covering set of horizontal mobile guards of 𝑃 is a subset 𝑀𝐻 ⊆ 𝑆𝐻 ,
such that every 𝑣 ∈ 𝑆𝑉 is covered in 𝐺 by an element of 𝑀𝐻 . Similarly, let 𝑀𝑉 ⊆ 𝑆𝑉
be a covering set of vertical mobile guards of 𝑃 . Without proof, we present any easy
consequence of Lemma 3, and another almost trivial claim.
Claim 5. If 𝐺[𝑀𝐻 ∪𝑀𝑉 ] is connected, then any edge 𝑒0 = {ℎ0, 𝑣0} ∈ 𝐸(𝐺) is 𝑟-visible
from some edge of 𝐺[𝑀𝐻 ∪ 𝑀𝑉 ].
Claim 6. For any ℎ1, ℎ2 ∈ 𝑆𝐻 the following statements hold:

• 𝑁𝐺(ℎ1) is the vertex set of a path in 𝑇𝑉 , or in other words 𝑁𝐺(ℎ1) induces a path
in 𝑇𝑉 .

• 𝑁𝐺(ℎ1) ⋂ 𝑁𝐺(ℎ2) is either empty, contains exactly one slice, or induces a path
in 𝑇𝑉 .

• If𝐺 is 2-connected andℎ1 is a neighbor ofℎ2 in the 𝑇𝐻 , then |𝑁𝐺(ℎ1) ⋂ 𝑁𝐺(ℎ2)| ≥
2.
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3 Sketch of the proof of Theorem 2
In [5] it was shown that 𝑀𝐻 and 𝑀𝑉 can be determined in linear time. 𝐺 can also
be determined in linear time by only storing the endpoints of 𝑁𝐺(ℎ) in 𝑇𝑉 for a vertex
ℎ ∈ 𝑆𝐻 (we referred to this as the sparse representation). The proof of Theorem 1 is
recursive and has three cases distinguished by the level of connectivity of 𝐺[𝑀𝐻 ∪𝑀𝑉 ]:
disconnected, connected but not 2-connected, and 2-connected.
Take an arbitrary slice 𝑣root ∈ 𝑀𝑉 , and make it the root of 𝑇𝑉 (do this for 𝑇𝐻 as well).
Run the preprocessing of the least common ancestors (LCA) algorithm of [3] on 𝑇𝑉 (and
𝑇𝐻 , respectively). Observe that for any two ℎ1, ℎ2 ∈ 𝑆𝐻 , we can compute 𝑁𝐺(ℎ1) ∩
𝑁𝐺(ℎ2) by making 6 LCA queries in constant time. Indeed, 𝑁𝐺(ℎ1) ∩ 𝑁𝐺(ℎ2) is a path
and its endpoints can be computed from the endpoints of the paths induced by 𝑁𝐺(ℎ1)
and 𝑁𝐺(ℎ2) in 𝑇𝑉 , which is stored in our representation of 𝐺.

Determining and storing 𝐺[𝑀𝐻 ∪ 𝑀𝑉 ] using sparse representation. Traverse 𝑇𝑉
via a DFS started from 𝑣root, and for each node 𝑣 ∈ 𝑆𝑉 take note of the closest element of
𝑀𝑉 which is on the search path between 𝑣root and 𝑣. For each slice ℎ ∈ 𝑀𝐻 , determine
the LCA of the endpoints of 𝑁𝐺(ℎ). If it is neither of the endpoints of 𝑁𝐺(ℎ), then the
above labels allow us to determine the endpoints of 𝑁𝐺[𝑀𝐻 ∪𝑀𝑉 ](ℎ). If the LCA is one
of the endpoints of 𝑁𝐺(ℎ), note this at the endpoint which is farther from 𝑣root. By DFS
traversing 𝑇𝑉 one more time maintaining the subset of 𝑀𝑉 contained in the search path,
we can identify both ends of 𝑁𝐺[𝑀𝐻 ∪𝑀𝑉 ](ℎ).

Determining the 𝑅-forests on 𝑀𝐻 and 𝑀𝑉 . Join two slices ℎ1, ℎ2 ∈ 𝑀𝐻 by an
edge if there exists a 𝑣 ∈ 𝑀𝑉 such that {ℎ1, 𝑣}, {ℎ2, 𝑣} ∈ 𝐸(𝐺) and there does not exist
ℎ3 ∈ 𝑀𝐻 which is between ℎ1 and ℎ2 in the path induced by 𝑁𝐺(𝑣) in 𝑇𝐻 . We call the
constructed graph the 𝑅-forest on 𝑀𝐻 (since its components are trees). The definition
for 𝑀𝑉 goes analogously. It can be easily verified that if 𝐺[𝑀𝐻 ∪ 𝑀𝑉 ] is connected
and we replace 𝑆𝐻 , 𝑆𝑉 , and 𝐺 with 𝑀𝐻 , 𝑀𝑉 , and 𝐺[𝑀𝐻 ∪ 𝑀𝑉 ], Claim 6 still holds.
By the previously described structure, we can identify if ℎ1, ℎ2 ∈ 𝑆𝐻 have a common
neighbor in 𝑀𝑉 . For every ℎ ∈ 𝑀𝐻 check if the closest element of 𝑀𝐻 ⧵ {ℎ} on the
ℎroot → ℎ path has a common 𝑀𝑉 neighbor with ℎ; if so, join them by an edge.
Let 𝑣 ∈ 𝑀𝑉 , and let ℎ1, ℎ2 ∈ 𝑆𝐻 be the endpoints of the path induced by 𝑁𝐺(𝑣) in 𝑇𝐻 .
Let the LCA of ℎ1 and ℎ2 be ℎ3, and suppose that ℎ3 ≠ ℎ1, ℎ2. Let ℎ4 ∈ 𝑀𝐻 be the
element closest to ℎ3 on the ℎ3 → ℎ1 path, and let ℎ5 ∈ 𝑀𝐻 be the element closest to
ℎ3 on the ℎ3 → ℎ2 path. In the 𝑅-forest, ℎ4 and ℎ5 also need to be joined. Again, by
DFS traversing 𝑇𝐻 and maintaining the subset of 𝑀𝐻 contained in the search path, we
can identify ℎ4 and ℎ5.

The remaining steps. Having completed the previous steps, we can identify connected
and 2-connected components of 𝐺[𝑀𝐻 ∪ 𝑀𝑉 ]. The method described in [5] can then
be used to determine a subset of edges of each 2-connected component such that the
chosen edges have 𝑟-vision of any edge induced by the neighborhood of the 2-connected
component in 𝐺. The set of these induced neighborhoods cover every node in 𝑆𝐻 ∪𝑆𝐻 ,
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however, there are edges that join two slices that are in different neighborhoods. An ex-
tra guard has to be found for each component of 𝐺[𝑀𝐻 ∪𝑀𝑉 ], but the algorithm to find
these is not discussed here. If 𝐺[𝑀𝐻 ∪ 𝑀𝑉 ] is connected, but not 2-connected, Claim 5
already implies that the union of the point guards constructed for the 2-connected com-
ponents of 𝐺[𝑀𝐻 ∪ 𝑀𝑉 ] is indeed covering set of point guards for the whole polygon.
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