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Outline

Art gallery problems Terminal-pairability problem

abstract models of challenges that appear in the world

geometric algorithms edge-connectivity, network flow

image processing, VLSI design routing traffic in networks

NP-hard, unknown to be polynomial time, or O(n17)
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The metamethod: the extremal-type approach

1. Group the instances of the problem by the value of a
“meaningful” parameter

2. In each group, find (up to a constant) sharp bounds on the
optimal solution of the worst case in the group

3. For an instance of the problem in the group, a solution
achieving the above bound is usually a good
approximation of the optimum

4. Moreover, such a solution can often be constructed
efficiently (in polynomial time)
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Results in art gallery problems



The Art Gallery problem (in Orthogonal Polygons)

• Art gallery: P ⊂ R2, a simple orthogonal polygon

• Point guard: fixed point g ∈ P, has 360◦ line of sight vision

• Objective: place guards in the gallery so that any point in
P is seen by at least one of the guards

P
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Typical art gallery theorems

Give (if possible, sharp) bounds on the number of guards
required to control the gallery as a function of the number of
its vertices.
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The art gallery theorem for orthogonal polygons

Theorem (Kahn, Klawe and Kleitman, 1980)⌊n
4
⌋
guards are sometimes necessary and always sufficient to

cover the interior of a simple orthogonal polygon of n
vertices.

Proof: via convex quadrilateralization.
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The art gallery theorem for orthogonal polygons

Theorem (Győri and O’Rourke independently, around 1984)

Every orthogonal polygon of n vertices can be partitioned
into ⌊n4⌋ orthogonal polygons of at most 6 vertices.
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Partitioning orthogonal polygons

Theorem (Hoffmann, 1990)
Any n-vertex orthogonal polygon with holes can be
partitioned into at most

⌊n
4
⌋
at most 16-vertex simple

orthogonal star pieces.

A 16-vertex orthogonal star.
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Partitioning orthogonal polygons

Metatheorem
Every (orthogonal) art gallery theorem has an underlying
partition theorem.
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Rectangular vision

Rectangular vision: two points x, y ∈ P have r-vision of each
other if there is an axis-parallel rectangle inside P, containing

x and y.

y

x
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z

x

x and z have unrestricted vision of each other
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z

x

x and z do not have rectangular vision of each other
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Rectangular vision

Rectangular vision: two points x, y ∈ P have r-vision of each
other if there is an axis-parallel rectangle inside P, containing

x and y.

x

The extremal bound is the same with rectangular vision
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Mobile guards in orthogonal polygons

A mobile guard is an axis-parallel line segment L ⊂ P inside
the art gallery. The guard sees a point x ∈ P iff there is a point
y ∈ L such that x is visible from y.

L

P

x

y

This orthogonal polygon can be covered by one mobile guard
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Art gallery theorem for mobile guards

Theorem (Aggarwal, 1984)⌊ 3n+4
16

⌋
mobile guards are sometimes necessary and always

sufficient to cover the interior of a simple orthogonal
polygon of n vertices.

Two questions of O’Rourke (1987):

• Can crossing patrols be avoided?

• Is it enough that the guards have visibility at the two
endpoints of their patrols?
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Partitioning orthogonal polygons

Theorem (Győri, M, 2016)
Any n-vertex simple orthogonal polygon can be partitioned
into at most ⌊ 3n+416 ⌋ at most 8-vertex pieces.

Any at most 8-vertex orthogonal polygon can be covered by one
mobile guard!
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Partitioning orthogonal polygons

• The complexity of the minimum size mobile guard system
is unknown, probably NP-hard.

• The previous partitioning theorem can be turned into a
linear time algorithm.
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Comparing point guards to mobile guards

Point guard Mobile guard

General polygons
⌊n
3
⌋ ⌊n

4
⌋

Orthogonal polygons
⌊n
4
⌋ ⌊ 3n+4

16
⌋

3/4−→
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Is this 3 : 4 ratio only an extremal
phenomenon?
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Definitions

• p: minimum number of point guards required to control P

• mV: minimum number of mobile guards, whose patrol is a
vertical line segment, required to control P

• mH: minimum number of mobile guards, whose patrol is a
horizontal line segment, required to control P
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Versus

Theorem (Győri, M, 2016)
For any simple orthogonal polygon

mV +mH − 1
p ≥ 3

4 ,

and this result is sharp.
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Sharpness

mV +mH = 13, p = 16

A new block requires 4 more point guards, but only 3 more
vertical + horizontal mobile guards.
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Approximating the optimal point guard system

Theorem (Győri, M, 2016)
The minimum size horizontal mobile guard system can be
computed in linear time.

Corollary
An 8

3 -approximation of the minimum size of a point guard
system of an orthogonal polygon can be computed in linear
time.

Optimal point guard problem: generally NP-hard. However,
Worman and Keil (2007) showed that it can be computed in
Õ(n17) for orthogonal polygons and rectangular vision.
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Results in terminal-pairability



Edge-disjoint paths problem

Base graph
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Edge-disjoint paths problem

Demand graph
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Edge-disjoint paths problem

Resolving multiplicities
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Edge-disjoint paths problem

Resolving multiplicities
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Edge-disjoint paths problem

Solution/Realization
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Edge-disjoint paths problem

EDP is NP-hard (Karp, 1972), even for complete base graphs
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The terminal-pairability problem

• Solving every instance of the edge-disjoint paths problem
separately is hopeless

• Let’s test a single base graph against a set of demand
graphs charaterized by a degree restriction.

• Motivation: given network switches with a fixed number of
ports, build larger switches from them as components
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Complete graphs

Problem (Csaba, Ralph J. Faudree, András Gyárfás, Jenő Lehel,
and Schelp, 1992)

What is the highest number q for which any demand graph
on n vertices and maximum degree q is realizable in Kn?

Theorem (Csaba, Ralph J. Faudree, András Gyárfás, Jenő
Lehel, and Schelp, 1992)

n
7.5 ≤ q ≤ n

2 .
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Complete graphs

Theorem (Győri, M, Mészáros, 2016)

Any demand graph D on n-vertices with ∆(D) ≤ 2⌊n6⌋ − 4 is
realizable in Kn.
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Approximation algorithms

Theorem (Kosowski, 2008)
Let D be a demand graph on the vertex set of Kn. There is an
O(mn log n) time algorithm which gives a 3.75-approximation
solution to the MaxEDP problem in Kn.
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Approximation algorithms

Theorem (M, 2017)
Let D be a demand graph on the vertex set of Kn. There is an
O(mn log n+ n3) time algorithm which gives a
(3+ O(1/n))-approximation solution to the MaxEDP problem
in Kn.
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Complete grid graph, d = 2

K5□K5 = K25
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Path-pairability

Theorem (Győri, M, Mészáros, 2016)
Let G = Kdt and let D = (V(D), E(D)) be a demand graph with
V(D) = V(Kdt ) and ∆(D) ≤ 2⌊ t

12⌋ − 2. Then D can be realized in
G.

G is path-pairable, if any matching of its vertices can be
realized in G.

Corollary
If t ≥ 24, Kdt is path-pairable.
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Path-pairability

Suppose any matching can be realized in G and ∆(G) ≤ ∆.
What is the maximum of N = |V(G)|?

Theorem (Ralph J. Faudree, András Gyárfás, and Jenő Lehel,
1999)

N ≤ 2∆∆.

Theorem (Mészáros, 2015)

∆2 ≤ N

24∆/23 ≤ N ≤ 2∆∆.
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Thank you for your attention!
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