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The Art Gallery problem - for Orthogonal Polygons

• Art gallery: P ⊂ R2, a simple orthogonal polygon

• Point guard: fixed point g ∈ P, has 360◦ line of sight vision

• Objective: place guards in the gallery so that any point in P is

seen by at least one of the guards

g

P
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The art gallery theorem for orthogonal polygons

Theorem (Kahn, Klawe and Kleitman, 1980)⌊
n
4

⌋
guards are sometimes necessary and always sufficient to cover

the interior of a simple orthogonal polygon of n vertices.

Theorem (Schuchardt and Hecker, 1995)

Finding a minimum size point guard system is NP-hard in simple

orthogonal polygons
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Rectangular or r-vision

Rectangular vision: two points x , y ∈ P have r -vision of each other

if there is an axis-parallel rectangle inside P, containing x and y .

y

x
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Rectangular or r-vision

Rectangular vision: two points x , y ∈ P have r -vision of each other

if there is an axis-parallel rectangle inside P, containing x and y .

z

x

x and z have unrestricted vision of each other
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Rectangular or r-vision

Rectangular vision: two points x , y ∈ P have r -vision of each other

if there is an axis-parallel rectangle inside P, containing x and y .

z

x

x and z do not have rectangular vision of each other
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Rectangular or r-vision

Rectangular vision: two points x , y ∈ P have r -vision of each other

if there is an axis-parallel rectangle inside P, containing x and y .

r -star: an orthogonal polygon that can be covered by one guard

equipped with r -vision
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Rectangular or r-vision

Rectangular vision: two points x , y ∈ P have r -vision of each other

if there is an axis-parallel rectangle inside P, containing x and y .

During the rest of the talk, vision means r -vision
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Complexity results for r-vision

Theorem (Worman and Keil, 2007)

There is an Õ(n17) time algorithm that computes the minimum

size set of point guards equipped with r -vision covering an

n-vertex simple orthogonal polygon.

Theorem (Lingas, Wasylewicz, Żyliński, 2012)

There is a linear time 3-approximation algorithm for minimum size

point guard system with rectangular vision.

The novelty of our algorithm is not so much the lower approximation

ratio, but the extremal style of the result (we will see this)
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Mobile guards in orthogonal polygons

A mobile guard is an axis-parallel line segment L inside the gallery.

The guard sees a point x ∈ P iff there is a point y ∈ L such that x

is visible from y .

L

P

x

y

Sliding camera (introduced by Katz and Morgenstern, 2011): a

mobile guard whose line segment is maximal, equipped with r -vision
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Results on the complexity of sliding camera problems

Theorem (Győri and M, 2016)

There is a linear time algorithm that finds a covering set of mobile

guards of cardinality at most
⌊

3n+4
16

⌋
, even if the patrols are

required to be pairwise disjoint.

The complexity of the optimization problem is open.
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Our result

p: minimum number of point guards required to cover P

mV : min. number of vertical sliding cameras required to cover P

mH : min. number of horizontal sliding cameras required to cover P

Theorem

For any simple orthogonal polygon there is a linear time algorithm

which finds a point guard of size at most

4

3
(mV + mH − 1) .

Since mV ,mH ≤ p, we have

4

3
(mV + mH − 1) ≤ 8

3
p,

so the algorithm provides an 8
3 -approximation solution.
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High level description of the

algorithm



Horizontal and vertical R-trees

h0 h2

h3

h4

h5

h6

h0 h1

ortho. poly. P

h0 h1 h2 h3 h4 h5 h6 SH

tree TH

Cut horizontally at each reflex vertex, join touching slices by an edge

Győri et. al. (1995) drafts that TH can be computed in linear time
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Horizontal and vertical R-trees

h0

v1 v2 v3 v4 v5 v6 v7 v8

ortho. poly. P

v1 v2 v3 v4 v5 v6 v7 v8 SV

tree TV

Do the same for vertical slices
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Horizontal and vertical R-trees

h0 h2

h3

h4

h5

h6

h0 h1

v1 v2 v3 v4 v5 v6 v7 v8

ortho. poly. P

h0 h1 h2 h3 h4 h5 h6 SH

v1 v2 v3 v4 v5 v6 v7 v8 SV

bipartite G

Join two slices iff their interiors intersect

G may have Ω(n2) edges
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Horizontal and vertical R-trees

h0 h2

h3

h4

h5

h6

h0 h1

v1 v2 v3 v4 v5 v6 v7 v8

ortho. poly. P

h0 h1 h2 h3 h4 h5 h6 SH

v1 v2 v3 v4 v5 v6 v7 v8 SVv4

Each neighborhood in G forms a path in the appropriate R-tree

Observation 1: by storing only the ends of the path formed by the

neighborhood of each vertex of G , the graph can be described in

O(n) space 9/17



Working with the sparse representation of G

• Choose arbitrary roots in the R-trees

• The lowest common ancestors algorithm (for eg. the one due to

Gabow and Tarjan, 1985) requires linear time

• Observation 2: for any v1, v2 ∈ SV , the ends of the path

formed by NG (v1) ∩ NG (v2) in TH can be computed using 6

LCA queries

• Observation 3: if G is 2-connected then for any v1v2 ∈ E (TV )

we have |NG (v1) ∩ NG (v2)| ≥ 2
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Pixelation graph

v1 v2 v3 v4 v5 v6 v7 v8

h2

h3

h4

h5

h6

h0 h1

P

h0 h1 h2 h3 h4 h5 h6 SH

v1 v2 v3 v4 v5 v6 v7 v8 SV

G

The intersection graph structure in connection with mobile guards

has been studied by Kosowski, Ma lafiejski, and Żyliński (2007)

With respect to rectangular vision, it is enough to know the pixels

containing the points.
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Pixelation graph

v1 v2 v3 v4 v5 v6 v7 v8

h2

h3

h4

h5

h6

h0 h1

P

h0 h1 h2 h3 h4 h5 h6 SH

v1 v2 v3 v4 v5 v6 v7 v8 SV

G

Point guard ↔ Edge
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Pixelation graph

v1 v2 v3 v4 v5 v6 v7 v8

h2

h3

h4

h5

h6

h0 h1

P

h0 h1 h2 h3 h4 h5 h6 SH

v1 v2 v3 v4 v5 v6 v7 v8 SV

G

v3

Sliding camera ↔ Vertex
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Pixelation graph

v1 v2 v3 v4 v5 v6 v7 v8

h2

h3

h4

h5

h6

h0 h1

P

h0 h1 h2 h3 h4 h5 h6 SH

v1 v2 v3 v4 v5 v6 v7 v8 SV

G

h4

Sliding camera ↔ Vertex
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Pixelation graph

v1 v2 v3 v4 v5 v6 v7 v8

h2

h3

h4

h5

h6

h0 h1

P

h0 h1 h2 h3 h4 h5 h6 SH

v1 v2 v3 v4 v5 v6 v7 v8 SV

G

h3

Rectangular vision (e1 ∩ e2 6= ∅)
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Pixelation graph

v1 v2 v3 v4 v5 v6 v7 v8

h2

h3

h4

h5

h6

h0 h1

P

h0 h1 h2 h3 h4 h5 h6 SH

v1 v2 v3 v4 v5 v6 v7 v8 SV

G

v3 v7

h3 h5

Rectangular vision (G [e1 ∪ e2] ∼= C4)
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Pixelation graph

v1 v2 v3 v4 v5 v6 v7 v8

h2

h3

h4

h5

h6

h0 h1

P

h0 h1 h2 h3 h4 h5 h6 SH

v1 v2 v3 v4 v5 v6 v7 v8 SV

G

v3 v5 v7

h1 h3 h5

G is chordal bipartite: any cycle of length at least 6 has a chord

(eg.: h5v5)
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Pixelation graph

v1 v2 v3 v4 v5 v6 v7 v8

h2

h3

h4

h5

h6

h0 h1

P

h0 h1 h2 h3 h4 h5 h6 SH

v1 v2 v3 v4 v5 v6 v7 v8 SV

G

v1 v4 v7

Covering set of vert. sliding cameras ↔ MV ⊆ SV dominating SH
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Pixelation graph

v1 v2 v3 v4 v5 v6 v7 v8

h2

h3

h4

h5

h6

h0 h1

P

h0 h1 h2 h3 h4 h5 h6 SH

v1 v2 v3 v4 v5 v6 v7 v8 SV

G

h3 h4

Covering set of horiz. sliding cameras ↔ MH ⊆ SH dominating SV
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More about the structure

• Dirac: ν = τ for a family subtrees of a tree ⇒ MV and MH

can be computed in linear time (Győri and M, 2018)

• M := G [MH ∪MV ] is also chordal bipartite; for simplicity

assume it is connected

• Given an edge h0v0 ∈ E (G ), there exists h1 ∈ MH and

v1 ∈ MV s.t. h0v1 ∈ E (G ) and h1v0 ∈ E (G )

• There is a path in M joining h1 to v1 which together with h0v0

forms a cycle

• G chordal ⇒ ∃v2h2 ∈ E (M) s.t. h0v0h2v2 is a 4-cycle in G

(or v2 = v0 or h2 = h0)
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Computing the structures induced by MH and MV

• E (M) is a point guard (given that M is connected), but may

contain Ω(n2) edges

• M connected ⇒ ∃ induced R-trees on MH and MV

• Observations 1-3 apply to M as well!

• The observations allow us to compute the 2-connected

components M1, . . . ,Mq of M efficiently

• For each i , we have a subproblem given by Mi and

NG (V (Mi )); so from now on assume that M is 2-connected
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Finding point guards

• Case 1: M is an edge: the only edge of M guards G

• Case 2: M is a non-trivial 2-connected graph: any edge is

contained in a 4-cycle, so we define

P[M] =
⋃

{e1,e2,e3,e4} is a C4 in M

Conv

(
4⋃

i=1

∩ei

)

Lemma: P[M] is simply connected
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M is a non-trivial 2-connected graph

P

A large simple orthogonal polygon with n = 160
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M is a non-trivial 2-connected graph

P

|MH | = 10
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M is a non-trivial 2-connected graph

P

|MV | = 12
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M is a non-trivial 2-connected graph

P

|MH |+ |MV | = 22
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M is a non-trivial 2-connected graph

P

P[M]

The pixels on the boundary of P[M] form a point guard of P!
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M is a non-trivial 2-connected graph

P

P[M]

c pixels at convex vertices of P[M]
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M is a non-trivial 2-connected graph

P

P[M]

r pixels at reflex vertices of P[M]
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M is a non-trivial 2-connected graph

P

P[M]

s pixels on the boundary but not at a vertex of P[M]
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M is a non-trivial 2-connected graph

P

P[M]

|MH |+ |MV | = c + 1
2s and r = c − 4, so

c + r + s = 2c + s − 4 = 2(|MH |+ |MV |)− 4

The pixels on the boundary of P[M] is a 4-approximation solution
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M is a non-trivial 2-connected graph

P

P[M]

We can do better: some reflex and side edges can be omitted
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M is a non-trivial 2-connected graph

P

P[M]

Path of ` reflex and side pixels: only d `3e guards needed
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M is a non-trivial 2-connected graph

P

P[M]

Cycle of ` reflex and side pixels: only b `3c guards needed
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Summing it up

c +
∑
paths

d `
3
e+

∑
cycles

b `
3
c ≤ c +

∑
paths

`+ 2

3
+
∑

cycles

`

3
≤

≤ c +
1

3
(r + s) +

∑
paths

2

3
≤

≤ c +
1

3
(c − 4 + s) +

1

3
s ≤

≤ 4

3
(c +

1

2
s − 1) ≤

≤ 4

3
(|MH |+ |MV | − 1)
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Finishing the proof

• If M is connected, but not 2-connected, we recursively

construct the guard sets for each 2-connected component

• Technical: if M has t connected components, at most t − 1

extra guards are necessary beyond what the recursive

construction gives
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Sharpness

mV + mH = 13, p = 16

A new block requires 4 more point guards, but only 3 more vertical

+ horizontal mobile guards.



Translating the problem to the pixelation graph

Orthogonal polygon Pixelation graph

Mobile guard Vertex

Point guard Edge

Simply connected Chordal bipartite (⇒, but 6⇐)

r -vision of two points e1 ∩ e2 6= ∅ or G [e1 ∪ e2] ∼= C4

Horiz. mobile guard cover MH ⊆ SH dominating SV

Covering set of mobile guards Dominating set



Making the definitions precise

• Degenerate-vision is prohibited

• The vertical and horizontal lines containing a point/mobile

guard may not pass through a vertex of the polygon.

• These may be assumed without loss of generality, by using

applying the following transformation to the gallery:



Simply connectedness is essential

For an orthogonal polygon with orthogonal holes, the ratio of mV + mH

and p is not bounded: no two of the black dots can be covered by a single

point guard.

mV + mH = 4k + 4, but p ≥ k2



Approximation algorithms for line of sight vision

Theorem (Krohn and Nilsson, 2012)

There is a polynomial time algorithm that computes a guard cover

of size O(OPT 2) in a simple orthogonal polygon P, where OPT

is the size of the smallest guard cover for P.

Theorem (Ghosh, 2010)

There is an O(n5) time algorithm that computes a solution the

point guard problem in a polygon (with or without holes) with an

O(log n) approximation ratio.

Theorem (Eidenbenz, Stamm, and Widmayer, 2001)

The point guard problem in simple polygons is APX-hard.
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Covering by r-stars

Theorem (Hoffmann and Kaufmann, 1991)

Any n-vertex orthogonal polygon with holes can be partitioned

into at most
⌊
n
4

⌋
at most 16-vertex r -stars in Õ(n

3
2 ) time.

A 16-vertex r -star.
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