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Abstract. We investigate terminal-pairability properties of complete graphs and improve the
known bounds in two open problems. We prove that the complete graph Kn on n vertices is
terminal-pairable if the maximum degree ∆ of the corresponding demand multigraph D is at
most 2⌊n

6
⌋ − 4. We also verify the terminal-pairability property when the number of edges in

D does not exceed 2n− 5 and ∆ ≤ n− 1 holds.

Dedicated to the memory of our friend, professor Ralph Faudree.

1. Introduction

We discuss a graph theoretic concept of terminal-pairability emerging from a practical net-
working problem introduced by Csaba, Faudree, Gyárfás, Lehel, and Shelp [1] and further studied
by Faudree, Gyárfás, and Lehel [2, 3, 4] and by Kubicka, Kubicki and Lehel [5]. We revisit two
open problems presented in [1] and [5]. Let G be a graph with vertex set V (G) = T (G) ∪ I(G)
where the set T (G) consists of t (t even) vertices of degree 1. We call G a terminal-pairable
network if for any pairing of the vertices of T (G) there exist edge-disjoint paths in G between
the paired vertices. T (G) is referred to as the set of terminal nodes or terminals and I(G) is
called the set of interior nodes of the network. Given a particular pairing of the terminals, the
pairs of terminals in the pairing are simply called pairs. For an inner vertex v we denote the
number of terminal and interior vertices incident to v by dT (G)(v) and dI(G)(v), respectively.

In a terminal-pairable network pairs of vertices of a graph are to be connected with edge-
disjoint paths, thus the notion is clearly related to multicommodity flow problems. The concept
is also related to weakly-linked (in our case weakly-t/2-linked) graphs: a graph G is weakly k-
linked if, for every pair of k-element sets, X = {x1, . . . , xk} and Y = {y1, . . . , yk}, there exist
edge-disjoint paths P1, . . . , Pk, such that each Pi is an xiyi-path. Observe that joining terminal
vertices (leaves) to the vertices of a weakly-k-linked graph G results in a terminal-pairable graph
as long as every vertex of G receives at most k terminals. On the other hand, note that terminal-
pairable graphs are not necessarily highly-weakly-linked. The stars (complete bipartite graph
K1,n where one class is formed by a singleton) give a very illustrative example of terminal-pairable
graphs with many terminal vertices that are not even weakly-2-linked.

Given a terminal-pairable network G with a particular pairing P of the terminals the demand
multigraph D = (V (D), E(D)) is defined as follows: we set V (D) = I(G) and join two vertices
u, v ∈ V (D) by as many copies of the edge uv as there are pairs of terminals in P s.t. one vertex
of the pair is joined to u and the other is joined to v in G. Obviously, |E(D)| = |T (G)|
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dD(v) = dT (G)(v) for every v ∈ V (D), thus in fact ∆(D) = max{dT (G)(v) | v ∈ I(G)}. For
convenience, demand multigraphs are referred to simply as demand graphs from now on.

Observe that a terminal pairing problem is fully described by the underlying network G and
the demand graph D. We call the process of substituting the demand edges by disjoint paths in
G the resolution of the demand graph.

Given a simple graph G, one central question in the topic of terminal-pairability is the maxi-
mum value of t for which an arbitrary extension of G by t terminal nodes results in a terminal-
pairable graphs. As at a given vertex v ∈ I(G) at most dI(G)(v) edge-disjoint paths can start, the
minimum degree δI(G) of the graph induced by the interior vertices provides an obvious upper
bound on t. However, with a balanced placement of the terminals with restriction on ∆(D) of
the corresponding demand graph (resembling the structure of weakly-linked graphs), the δI(G)

bound on the extremal value of t can be greatly improved.
Csaba, Faudree, Gyárfás, Lehel, and Shelp [1] studied above extremal value for the complete

graph Kn and investigated the following question:

Problem 1 ([1]). Let Kq
n denote the graph obtained from the complete graph Kn (n even) by

adding q terminal vertices to every initial vertex. What is the highest value of q (in terms of n)
for which Kq

n is terminal-pairable?

One can easily verify that the parameter q cannot exceed n/2. Indeed, take the demand graph
D obtained by replacing every edge in a one-factor on n vertices by q parallel edges. In order to
create edge-disjoint paths most paths need to use at least two edges in Kn, thus a rather short
calculation implies the indicated upper bound.

The so far best result on the lower bound is also due to Csaba, Faudree, Gyárfás, Lehel, and
Shelp:

Theorem 2 ([1]). If q ≤ n
4+2

√
3
, then Kq

n is terminal-pairable.

We improve their result by proving the following theorem:

Theorem 3. If q ≤ 2⌊n
6 ⌋ − 4, then Kq

n is terminal-pairable.

Kubicka, Kubicki and Lehel [5] investigated terminal-pairability properties of the Cartesian
product of complete graphs. In their paper the following “Clique-Lemma” was proved and
frequently used:

Lemma 4 (Kubicka, Kubicki, Lehel [5]). Let G be a complete graph on n vertices, where n ≥ 5.
If every vertex of G has at most n − 1 adjacent terminals and the total number of terminals is
2n, then for every pairing of terminals, there are edge disjoint paths for all pairs.

In the same paper the following related problem was raised about the possible strengthening
of Lemma 4:

Problem 5 ([5]). Find the largest value of α such that Kn with α · n terminals (at most n− 1
at each vertex) has the above property for all n larger than some constant n0.

Obviously, 2 ≤ α due to Lemma 4. It is also easy to see that α < 4. Let D be a demand graph
on n ≥ 4 vertices, in which two pairs of vertices, U, V and X,Y are both joined by (n−2) parallel
edges (2n− 4 edges or equivalently 4n− 8 terminals in total; dD(W ) = 0 for W ̸∈ {X,Y, U, V }).
Observe that to resolve the demand graph any disjoint path system must contain a path from
X to Y passing through U or V . However, there are also n− 2 disjoint paths connecting U and
V , meaning that U or V is incident to at least 2 + (n− 2) = n disjoint edges, which is clearly a
contradiction. This implies that the number of terminals in G cannot exceed 4n− 10. We show
that this bound is sharp by proving the following theorem:
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Figure 2. Resolving the multiplicities at v

Theorem 6. Let D be a demand graph with at most 2n−5 edges such that no vertex is incident
to more than n− 1 edges. Then D can be resolved.

Before the proofs we fix further notation and terminology. For convenience, we call a pair
of edges joining the same two vertices a C2. For k > 2, Ck denotes the cycle on k vertices.
For a subset S ⊂ V (G) of vertices let d(S, V (G) − S) denote the number of edges with exactly
one endpoint in S. Let [S] denote the subgraph induced by the subset of vertices S. We call
a pair of vertices joined by k parallel edges a k-bundle. For a vertex v we denote the set of
neighbors by Γ(v) and use γ(v) = |Γ(v)|. We define the multiplicity m(v) of a vertex v as
follows: m(v) = d(v)−γ(v). Observe that m(v) is the minimal number of direct edges that need
to be replaced by longer paths in the graph to guarantee an edge-disjoint path-system for the
terminals of v.

We define an operation that we will subsequently use in our proofs: given an edge uv ∈ E we
say that we lift uv to a vertex w when substituting the edge uv by a path of consecutive edges
uw and wv. Note that this operation increases the degree of w by 2, but does not affect the
degree of any other vertex (including u and v). Also, as a by-product of the operation, if w is
already joined by an edge to u or v, the multiplicity of the appropriate pair increases by one (see
Figure 1).

Finally, note that if a graph G has n vertices and d(v) ≤ n − 1, all multiplicities of v can
be easily resolved by subsequent liftings. Indeed, v has n− 1− γ(v) non-neighbors and m(v) =
d(v)−γ(v) ≤ n−1−γ(v) multiplicities, thus we can assign every edge of v causing a multiplicity
to a non-neighbor to which that particular edge can be lifted. We call this resolution of the
multiplicities of v (see Figure 2).
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x1 x2 x3

Figure 3. A balanced lifting coloring, where x1, x2, x3 get pairwise different colors.

2. Proof of Theorem 3

We show that if D = (V,E) is a demand multigraph on n vertices and ∆(G) ≤ 2⌊n
6 ⌋− 4, then

D can be transformed into a simple graph by replacing parallel edges by paths of D. We prove
the statement by induction on n. Observe first that the statement is obvious for n < 18. For
18 ≤ n < 24, note that the demand graph D is the disjoint union of 2-bundles, circles, paths,
and isolated vertices. It is easy to see that multiplicities in these demand graphs can be resolved;
we leave the verification of the statement to the reader.

From now on assume n ≥ 24. We may assume without loss of generality that D is an(
2⌊n

6 ⌋−4
)
-regular multigraph; if necessary, additional parallel edges may be added to D. Should

a single vertex v fail to meet the degree requirement, we bump up its degree by further lifting
operations as follows: as the deficit

(
2⌊n

6 ⌋−4
)
−d(v) must be even, we can lift an arbitrary edge

e ∈ E([V (D)− v]) to v. We remind the reader that lifting e to v increases d(v) by two while it
does not affect the degree of the rest of the vertices.

We will use the well known 2-Factor-Theorem of Petersen [6]. Be aware that a 2-factor of a
multigraph may contain several C2’s (however, this is the only way parallel edges may appear in
it).

Theorem 7 ([6]). Let G be a 2k-regular multigraph. Then E(G) can be decomposed into the
union of k edge-disjoint 2-factors.

Some operations, which are performed later in the proof, are featured in the following defini-
tion, claim, and lemma.

Definition 8 (Lifting coloring). Let F be a multigraph, and c : E(F ) ∪ V (F ) → {1, 2, 3} be a
coloring of the edges and vertices of F . We call c a lifting coloring of F if and only if

(1) for any edge e = uv ∈ E(F ), c(u) ̸= c(e) and c(v) ̸= c(e), and
(2) for any two edges e1, e2 ∈ E(F ) incident to a common vertex we have c(e1) ̸= c(e2).

Moreover, if the number of vertices in different color classes differ by either 0, 1, or 2, then we
call c a balanced lifting coloring of F .

Claim 9. Let F be a multigraph such that ∀v ∈ V (F ) we have dF (v) ≤ 2. If w1, w2, w3 ∈ V (F )
are three pairwise non-adjacent different vertices, then F has a balanced lifting coloring where wi

gets color i.

Proof. The proof is easy but its complete presentation requires a rather lengthy (but straight-
forward) casework. We leave the verification of the statement to the reader. Figure 3 shows an
example output of this lemma. □
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Lemma 10. Let D be a demand graph on n vertices, such that ∆(D) ≤ ⌊n
3 ⌋ − 4. Furthermore,

let X = {x1, x2, x3} be a subset of V (D) of cardinality 3, such that |E(D[X])| = 0. Moreover,
for i = 1, 2, 3, either dF (xi) = 2 or dD(xi) ≤ ⌊n

3 ⌋ − 5. Let B be an at most 3 element subset of
V (D) \X. Let F be an 2-matching of D, i.e., to any vertex of D there are at most 2 incident
edges in F . Then there exists a demand graph H which satisfies

• V (H) = V (D) \X,
• E(H) ⊃ E(D[V (H)]) \ F ,
• {e ∈ E(H) : e is incident to at least one of B} ⊂ E(D), and
• for any v ∈ V (H) we have dH(v) ≤ dD(v)− dF (v)(+1 if v /∈ B).

Moreover, if H has a resolution, then so does D.

Proof. We will perform a series of liftings in D in two phases, obtaining D′ and D′′. At the
end of the second phase, we will achieve that X has no parallel edges in D′′. Therefore setting
H = D′′ −X will satisfy the second claim of the lemma.

First, we determine the series of liftings to be executed in the first phase. Notice that Claim 9
implies the existence of a balanced lifting coloring c of F such that c(xi) ≡ i + 1 (mod 3). Lift
each edge f ∈ F to xc(f), except if f is incident to xc(f). Let F ′ be the set of lifted edges, that is

F ′ =
⊎
f∈F,

xc(f) /∈f

{
two edges joining xc(f) to the two vertices of f

}
,

where
⊎

denotes the disjoint union. Let the multigraph D′ be defined on the same vertex set as
D, and let its edge set be

E(D′) = {e ∈ E(D) : e /∈ F or xc(e) ∈ e}
⊎

F ′.

In other words, D′ is the demand graph into which D is transformed by lifting the elements of
F . Let Y = V (D) \X. Observe that dD′(y) = dD(y) for y ∈ Y . Let Yi = {y ∈ Y \B | c(y) = i}
be the color i vertices in Y \B. The balancedness of c guarantees that

|Yi| = |c−1(i) \X \B| ≥ |c−1(i)| − 1− |B| ≥
⌊n
3

⌋
− 5.

In the second phase, our task is to resolve all multiplicities of xi in D′. Observe that as edges
of F of the same color formed a matching, out of every two parallel edges that are incident to
xi in D′ at least one of them must be an initial edge in E(D′) \ F ′. The vertex xi is incident to
dD′(xi)− dF ′(xi) edges of E(D′) \ F ′; we plan to lift these edges to the elements of Yi by using
every vertex in Yi for lifting at most once. If dF (xi) = 2, then one of the two edges of F incident
to x has color i− 1, and this edge is lifted xi−1 in D′. Thus

dD′(xi)− dF ′(xi) ≤
{

dD(xi)− 1, if dF (xi) = 2;⌊
n
3

⌋
− 5, if dF (xi) < 2;

≤ |Yi|.

As elements of c−1(i) are not incident to edges of color i, the set Yi \ B offers enough space to
carry out the liftings. That being said, note that neighbors of xi in Yi cannot be used for lifting
as they would create additional multiplicities. On the other hand, if v ∈ Yi and e = vxi ∈ E(D)
then e is an initial edge of xi that either generates no multiplicity at all or it is part of a bundle of
parallel edges, one of which we do not lift. In other words, for every vertex of Yi that is excluded
from the lifting we mark an initial edge of xi that we do not need to lift. As a result of this,
resolution of the remaining multiplicities at xi can be performed in Yi − Γ(xi). Let D′′ denote
the demand graph obtained after resolving all of the multiplicities of x1, x2, and x3.

At most 1 element of E(D′) \ E(F ′) has been lifted to each y ∈ Y , therefore there are no
multiple edges between the sets X and Y in the demand graph D′′. Moreover, D′′[X] = D′[X]
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is a subgraph of a triangle, which emerges as we lift the at most one edge of color i+ 2 of xi to
xi+1 (take the indices cyclically), for i = 1, 2, 3.

Any vertex y ∈ Y of color i has at most two incident edges in F ′, joining y to a subset of
{xi+1, xi+2}.

• If an edge has been lifted to y ∈ Y of color i, then y is adjacent to xi and dD′′(y) =
dD′(y) + 2. Thus y is joined to at least dF ′(y) + 1 elements of X in D′′. As no edge of
color i can be incident to y, we have dF ′(y) = dF (y). Therefore

dD′′[Y ](y) ≤ dD′′(y)− dF ′(y)− 1 = dD′(y)− dF (y) + 1 = dD(y)− dF (y) + 1.

• If no edges have been lifted to y ∈ Y , then dD′′(y) = dD′(y) and y is adjacent to at least
dF (y) elements of X in D′′. Therefore

dD′′[Y ](y) = dD′′(y)− dF (y) ≤ dD′(y)− dF (y) = dD(y)− dF (y).

As elements of B are excluded from Yi, 0 edges are lifted to them, and so we proved the statement
of the lemma. □

Let X1 = {x1, x2, x3} be a subset of 3 elements of V (D), such that D[X] has 0 edges. Such a
set trivially exists, as any two non-adjacent vertices have (n− 2)− 2∆(D) ≥ n

3 +2 common non-
neighbors. Since the degree in D is at least 2 · (24/6)−4 = 4, Theorem 7 implies the existence of
two disjoint 2-factors, A1 and A2 of D. Notice that A2 −X has 3 path components (as a special
case, an isolated vertex is a path on one vertex). Extend A2 −X to a maximal 2-matching F2

of D −X −A1. It is easy to see that there exists a 3-element subset B1 of V (D) \X such that
• B1 induces 0 edges in D −A1,
• {v ∈ V (D) \X : dF2

(v) = 0} ⊂ B1, and
• B2 = {v ∈ V (D) \X : dF2(v) = 1} \B1 has cardinality at most 3.

We are ready to use Lemma 10. First, apply it to D, where we lift F = A1 to elements of
X = X1, while not creating new edges incident to B = B1. Let the obtained graph be H1. We
have ∆(H1) ≤ ∆(D) − δ(A1) + 1 = ∆(D) − 1. Furthermore, E(H1[B1]) ⊆ E(D[B1]) = ∅, and
for all v ∈ B1 we have dH1

(v) ≤ ∆(D)− δ(A1) ≤ ∆(D)− 2.
We apply Lemma 10 once more. Now H1 is our base demand graph, F2 is the 2-matching to

be lifted to elements of B1, and we avoid lifting to elements of B2. Let the resulting demand
graph be H2, whose vertex set is V (D) \X \B1 of cardinality n− 6. We have

dH2
(v) ≤

{
dH1

(v)− dF2
(v) + 1 if v /∈ B2,

dH1
(v)− dF2

(v) if v ∈ B2.
≤

≤
{

(∆(D)− 1)− 2 + 1 if v /∈ B2,
(∆(D)− 1)− 1 if v ∈ B2.

≤

≤ ∆(D)− 2 = 2

⌊
n− 6

6

⌋
− 4.

By induction on n, we know that H2 has a resolution, implying that H1 has a resolution,
which in turn implies that D has a resolution.

3. Proof of Theorem 6

We prove our statement by induction on n. For n ≤ 4 the statement is straightforward, the
cases n = 5, 6 require a somewhat cumbersome casework. Note that if n ≥ 4 we may assume
D has exactly 2n − 5 edges, otherwise we join two non-neighbors whose degree is smaller than
n− 1.
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For the inductive step, we choose a vertex x, resolve all of its multiplicities, and delete it
from the demand graph. There are two additional conditions to assert as the number of vertices
decreases from n to n− 1:

i) We need to delete at least 2 edges from D. These edges can be either already incident
to x or can be lifted to x.

ii) Let B denote the set of vertices of degree greater than or equal to n− 1. Obviously, to
apply induction we need to decrease the degree d(v) of every vertex v ∈ B by at least
one. Decreasing d(v) can be performed by lifting an edge incident to v to x. Note that
this operation might create additional multiplicities that need to be resolved before the
deletion of x.

In addition, observe that we can lift at least one edge to a vertex v without its degree exceeding
the degree bound for n′ = n− 1 if and only if d(v) < n− 2. Let

B = {z1, . . . , z|B|} = {v ∈ V (D) : d(v) ≥ n− 2}.

As
∑

v∈V (D)

d(v) = 4n− 10, it follows that |B| ≤ 3. We perform a casework on |B|.

|B| = 0: If B is empty, then the only condition we need to guarantee is the deletion of at least
two edges in D. We have two cases.

– If there is an x ∈ V (D) with γ(x) ≥ 2: we have n− 1− γ(x) vertices for lifting to
resolve the d(x) − γ(x) multiplicities of x. Obviously, d(x) − γ(x) ≤ n − 3 − γ(x)
thus we have enough space to resolve all multiplicities of x. After the deletion of x,
the graph has lost γ(x) ≥ 2 edges, and the maximum degree is still two less then
the number of vertices.

– If ∀x ∈ V (D) we have γ(x) ≤ 1, then D is the disjoint union of bundles and isolated
vertices, which is trivial to resolve.

|B| = 1: We perform the same operation as in the previous case with the choice x = z1. Observe
that our inequality becomes d(z1)− γ(z1) ≤ n− 1− γ(z1) thus we have enough vertices
in the multigraph to perform all the necessary liftings.

|B| = 2: Observe first that z1 and z2 are joined by an edge e or else

2n− 5 ≥ d(B, V (D)−B) = d(z1) + d(z2) ≥ 2n− 4,

a contradiction. Let us first assume that z1 or z2 (say, z1) has an edge ending in a
vertex different from z2 (i.e. d(B, V (D) − B) > 0). Observe that in this case m(z1) =
d(z1)− γ(z1) ≤ (n− 1)− γ(z1), thus all multiplicities of z1 can be resolved by lifting the
appropriate edges to V (D)− {z1} − Γ(z1).

In the remaining case z1 and z2 form a bundle of at most n − 1 edges. We can lift
n−2 of these edges to V (D)−B without difficulties, delete one of the vertices in B, and
proceed by induction.

|B| = 3: Observe that any two vertices of {z1, z2, z3} must be joined by and edge else the same
reasoning as above leads to contradiction. Note also that a simple average degree calcu-
lation guarantees the existence of an isolated vertex x. We distinguish two cases:

i) If d(B, V (D)−B) = 0, we may assume that V (D)−B contains an edge, otherwise
3(n − 3) ≥ 4n − 10 ⇒ n ≤ 7 and all edges are contained in B. For n = 5, 6, 7 that
leads to 4 possible demand graphs whose resolution can be easily completed; a case
for n = 6 is shown in Figure 4.
Let f denote an arbitrary edge in V (D)−B. We lift two edges of B not belonging
to the same pair as well as f to x; observe that the degrees of all vertices in B
dropped by at least 1. As n ≥ 7, the multiple edge created at vertex x can be lifted
to a vertex of V (D)−B that was not incident to f .
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(a) Demand graph (b) A solution

Figure 4

ii) If d(B, V (D) − B) > 0 let f be an edge between B and V (D) − B. Without loss
of generality we may assume f is incident to z3. We lift f as well as an edge e
between z1 and z2; as e and f are disjoint, no new multiplicity is created, thus we
can proceed by induction.
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