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INTRODUCTION

• Problem: given a non-negative integer sequence 𝑑 of even
sum, generate a graph 𝐺 ∈ 𝒢(𝑑) with degree sequence 𝑑,
uniformly at random (labeled vertices)

• Motivation:
• network science: generating graphs from a null model for
hypothesis testing

• testing software, algorithms

• simulations
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POSSIBLE WAYS TO SAMPLE 𝒢(𝑑)

• Enumerate elements of 𝒢(𝑑): the set is huge (exponential
in 𝑛), generally not feasible

• Stub pairing (configuration model)

• the probability of a multiedge or loop appearing tends to 1
exponentially quickly for regular graphs of degree
Ω((log 𝑛) 1

2 +𝜀).
Booster shot: Rejection schemes (eg. Wormald et al.)

• Importance sampling by Bliztstein and Diaconis: the
distribution is known but not uniform, unknown variance
(quality of the sample is unknown)

• Monte Carlo Markov Chain (MCMC) methods ⇒
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MARKOV CHAINS - A REMINDER

Our chains transition from state 𝑖 to state 𝑗 with some probability 𝑝𝑖,𝑗 = 𝑝𝑗,𝑖
(symmetric), independently of time and previous steps

𝐺1

𝐺2

𝐺3

𝐺4

𝐺5

𝐺6

𝐺7

∀𝑖 ∑𝑗 𝑝𝑖,𝑗 = 1

𝑝3,3 = 1/2

𝑝3,7 = 1/6

𝑝3,5 = 1/6

𝑝3,1 = 1/6

𝐺3𝑡 = 1
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MCMC METHODS - PRELIMINARIES

• If the Markov-chain is irreducible, symmetric, and
aperiodic then the MC converges to the uniform
distribution

• Instead of exact, only require approximate sampling: the
sampled distribution is 𝜀 close to the uniform distribution
in variation (ℓ1-)distance in poly(𝑛) ⋅ log 𝜀−1 steps (rapidly
mixing)
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JERRUM-SINCLAIR CHAIN

State space: 𝒢(𝑑) ∪ ⋃
𝑖,𝑗∈𝑉

𝒢(𝑑 − 1𝑖 − 1𝑗).

Transitions: u.a.r. choose 𝑎, 𝑏 ∈ 𝑉 (𝐺), then

• if 𝐺 ∈ 𝒢(𝑑), delete 𝑎𝑏 ∈ 𝐸(𝐺) if it exists.

• if 𝐺 ∈ 𝒢(𝑑 − 1𝑖 − 1𝑗) and deg𝐺(𝑎) < 𝑑(𝑎), try to add 𝑎𝑏 to
𝐸(𝐺). If deg𝐺+𝑎𝑏(𝑏) > 𝑑(𝑏), then delete u.a.r. an edge of 𝑏.
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𝑃 -STABILITY

The state space of JS chain: 𝒢(𝑑) ∪ ⋃𝑖,𝑗∈𝑉 𝒢(𝑑 − 1𝑖 − 1𝑗)
To get a sample from 𝒢(𝑑) in reasonable time, we must have
(where 𝑛 = dim(𝑑))

∑𝑖,𝑗 |𝒢(𝑑 − 1𝑖 − 1𝑗)|
|𝒢(𝑑)| ≤ poly(𝑛) ∀𝑑 ∈ 𝒟.

In this case, we call 𝒟 a 𝑃 -stable class of degree sequences.
Theorem (Jerrum and Sinclair 1990)
The JS chain is rapidly mixing on degree sequences from a
𝑃 -stable class.
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EXAMPLE FOR A 𝑃 -STABLE REGION

Theorem (Jerrum and Sinclair 1992)
The class of degree sequences satisfying
(Δ − 𝛿 + 1)2 ≤ 4𝛿(𝑛 − Δ + 1) is 𝑃 -stable.

8/18



A (SEEMINGLY PATHOLOGICAL) OBSTACLE

𝑣1

𝑣16

𝑣2

𝑣15

𝑣3

𝑣14

𝑣4

𝑣13

𝑣5

𝑣12

𝑣6

𝑣11

𝑣7

𝑣10

𝑣8

𝑣9

𝑛 = 8

ℎ0(𝑛) = (1, 2, … , 𝑛 − 1, 𝑛, 𝑛, 𝑛 + 1, … , 2𝑛 − 1)
has a unique realization

{ℎ0(𝑛) | 𝑛 ∈ ℕ} not 𝑃 -stable: |𝒢(ℎ0(𝑛) − 1𝑛 − 12𝑛)| ≈ (3+
√

5
2 )

𝑛

Can be blown up to a non-pathological non-𝑃 -stable class.
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A (SEEMINGLY PATHOLOGICAL) OBSTACLE

Breaker of (Markov) Chains

Queen of Split Graphs

Half-Graph of Erdős and Hajnal
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APPLICABILITY REMARKS

The cardinality of the state space of the JS chain can easily be
a factor of 𝑛8 larger than 𝒢(𝑑).

𝒢(7, 4, 1, …)

𝒢(6, 4, 1, …)

𝒢(7, 3, 1, …)
𝒢(7, 3, 2, …)

𝒢(6, 3, 2, …)
10/18



THE SWAP (SWITCH) MARKOV-CHAIN

Proposed by Kannan, Tetali, Vempala (1997)

State space: only the set of realizations 𝒢(𝑑) of a deg. seq. 𝑑
Transitions: exchange edges with non-edges along a randomly
chosen alternating 𝐶4 (least perturbation)

swap:

directed △:
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PREVIOUS RESULTS ON THE SWAP CHAIN

Rapid mixing of the Swap Markov chain shown by

simple bipartite directed

regular Cooper, Dyer, Greenhill 2007 Erdős et al. 2013 Greenhill 2011

Δ ≤ 𝑐√𝑚 Greenhill and Sfragara 2018 Erdős, Miklós, M, Soltész 2018

Interval — Erdős, Miklós, M, Soltész 2018
(Δ − 𝛿)2 ≤ 𝛿(𝑛 − Δ) similar

strongly stable Amanatidis and Kleer 2019 —
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A UNIFYING RESULT

Theorem (Greenhill, Erdős, Miklós, M, Soltész, Soukup 2019+)
The swap Markov-chain is rapidly mixing on 𝑃 -stable degree
sequences (unconstrained, bipartite, directed)

• Proof: complex (based on the Jerrum-Sinclair method)

• Every previously known rapidly mixing region is 𝑃 -stable

• Gao and Wormald (2016) describe several 𝑃 -stable
regions, including power-law distribution-bounded degree
sequences for 𝛾 > 1 +

√
3

• Power-law degree sequences with 𝛾 > 2 are also
conjectured to be 𝑃 -stable
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BEYOND 𝑃 -STABILITY...?
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𝑃 -STABILITY IS NOT NECESSARY FOR RAPID MIXING

For all 𝑛, 𝑘 ∈ ℤ+, let us define the bipartite degree sequence

ℎ𝑘(𝑛) ∶= ( 1 2 3 ⋯ 𝑛 − 2 𝑛 − 1 𝑛 − 𝑘
𝑛 − 𝑘 𝑛 − 1 𝑛 − 2 ⋯ 3 2 1 )

Theorem (Erdős, Győri, M, Milós, Soltész 2019+)
For any 𝑘 ∈ ℤ+, the swap Markov chain is rapidly mixing on

ℋ𝑘 ∶= { ℎ𝑘(𝑛) ∶ 𝑛 ≥ 𝑘 },

even though the class is not 𝑃 -stable:

|𝒢(ℎ𝑘+1(𝑛))|
|𝒢(ℎ𝑘(𝑛))| = 𝑒Ω𝑘(𝑛)

Remark: the proof works up to 𝑘 ≤ 𝑐√
log 𝑛 for some 𝑐.
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PROOF OF RAPID MIXING FOR 𝑘 = 1; GEOMETRIC REPRESENTATION

ℎ0(𝑛) ∶= ( 1 2 3 ⋯ 𝑛 − 2 𝑛 − 1 𝑛
𝑛 𝑛 − 1 𝑛 − 2 ⋯ 3 2 1 )

ℎ1(𝑛) ∶= ( 1 2 3 ⋯ 𝑛 − 2 𝑛 − 1 𝑛 − 1
𝑛 − 1 𝑛 − 1 𝑛 − 2 ⋯ 3 2 1 )

Suppose 𝐺 ∈ 𝒢(ℎ1(𝑛)). What does 𝐻0(𝑛)△𝐺 look like?

𝑛 − 1 𝑛 − 𝑖 + 1 2 1

𝑛 − 1𝑖21

𝑛

𝑛

𝐻0(𝑛)

𝐻0(𝑛)△𝐺 is an 𝑥-monotone path!

Swap in this representation: moves a vertex of the path or deletes/inserts a pair of
adjacent vertices
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THE JERRUM-SINCLAIR METHOD

Let Γ contain a swap sequence 𝑋 = 𝑍𝑋,𝑌
0 , 𝑍𝑋,𝑌

1 , 𝑍𝑋,𝑌
2 , … , 𝑍𝑋,𝑌

ℓ = 𝑌
for each pair of realizations 𝑋, 𝑌 ∈ 𝒢(𝑑).

𝒢(𝑑)

𝑍

𝜌(Γ): max number of sequences through a 𝑍

ℓ(Γ): max length of a sequence in Γ

Theorem (follows from Jerrum and Sinclair 1990)

𝜏swap(𝜀) ≤ poly(𝑛) ⋅ 𝜌(Γ)
|𝒢(𝑑)| ⋅ ℓ(Γ) ⋅ (log(|𝒢(𝑑)|) + log(𝜀−1))
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SWAP SEQUENCE BETWEEN 𝑋, 𝑌 ∈ 𝒢(ℎ1(𝑛))

𝑋

𝑌

𝑍0

𝐿0
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SWAP SEQUENCE BETWEEN 𝑋, 𝑌 ∈ 𝒢(ℎ1(𝑛))
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SWAP SEQUENCE BETWEEN 𝑋, 𝑌 ∈ 𝒢(ℎ1(𝑛))
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SWAP SEQUENCE BETWEEN 𝑋, 𝑌 ∈ 𝒢(ℎ1(𝑛))
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SWAP SEQUENCE BETWEEN 𝑋, 𝑌 ∈ 𝒢(ℎ1(𝑛))
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SWAP SEQUENCE BETWEEN 𝑋, 𝑌 ∈ 𝒢(ℎ1(𝑛))
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SWAP SEQUENCE BETWEEN 𝑋, 𝑌 ∈ 𝒢(ℎ1(𝑛))
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SWAP SEQUENCE BETWEEN 𝑋, 𝑌 ∈ 𝒢(ℎ1(𝑛))
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SWAP SEQUENCE BETWEEN 𝑋, 𝑌 ∈ 𝒢(ℎ1(𝑛))
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SWAP SEQUENCE BETWEEN 𝑋, 𝑌 ∈ 𝒢(ℎ1(𝑛))
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SWAP SEQUENCE BETWEEN 𝑋, 𝑌 ∈ 𝒢(ℎ1(𝑛))
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𝐿11
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ESTIMATING THE LOAD

Clearly, ℓ(Γ) = 𝒪(𝑛).

From 𝑍𝑖 and 𝐿𝑖 and a 𝒪(log 𝑛) bits we can recover 𝑋 and 𝑌 !

⟹ For a fix 𝑍 ∈ 𝒢(𝑑), the number of swap sequences of Γ
passing through 𝑍 is at most the number of possible 𝐿𝑖 times
poly(𝑛)!

⟹ 𝜌(Γ) = poly(𝑛) ⋅ |𝒢(ℎ1(𝑛))| Jerrum-Sinclair⟹ Swap MC is rapidly
mixing on 𝒢(ℎ1(𝑛))!
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THE SIMPLE AND DIRECTED ANALOGUES FOLLOW IMMEDIATELY

bipartite

add a clique orient upwards

simple directed



THE JERRUM-SINCLAIR METHOD

Let 𝑓 be a multicommodity-flow that sends 1 quantity of commodity
between each two realizations in the swap graph on 𝒢(𝑑).

𝒢(𝑑)

𝐺

Theorem (follows from Jerrum and Sinclair 1990)

𝜏swap(𝜀) ≤ 𝑛4 ⋅ max
𝐺∈𝒢(𝑑)

∑
𝐺∈𝛾

𝑓(𝛾)|𝛾|
|𝒢(𝑑)| ⋅ (log(|𝒢(𝑑)|) + log(𝜀−1))



DESIGNING THE MULTICOMMODITY-FLOW

• Let 𝐺1, 𝐺2 ∈ 𝒢(𝑑) ⇒
𝐸(𝐺1)△𝐸(𝐺2) is a balanced red-blue graph

• Fix an alternating closed trail on 𝐸(𝐺1)△𝐸(𝐺2)

• Crucial decision: decomposing the alternating trail into
”simpler” alternating circuits

𝐺1
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DESIGNING THE MULTICOMMODITY-FLOW

• Let 𝐺1, 𝐺2 ∈ 𝒢(𝑑) ⇒
𝐸(𝐺1)△𝐸(𝐺2) is a balanced red-blue graph

• Fix an alternating closed trail on 𝐸(𝐺1)△𝐸(𝐺2)

• Crucial decision: decomposing the alternating trail into
”simpler” alternating circuits

𝐸(𝐺1)△𝐸(𝐺2)



ELEMENTARY ALTERNATING CIRCUITS

Elementary alternating circuit: each vertex on the trail is either
visited once, or twice but with different parity

𝑥1

𝑥2 𝑥3

𝑥4

𝑥5

𝑥6

𝑥7𝑥8

𝑥9

𝑥10

𝑥1 = 𝑥4

𝑥3 = 𝑥6

𝑥5 = 𝑥8

𝑥7 = 𝑥10

𝑥9 = 𝑥2

Sweep: the edges are exchanged with non-edges and vica versa from
𝑥1 in counter-clockwise order
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