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INTRODUCTION

- Problem: given a non-negative integer sequence d of even
sum, generate a graph G € G(d) with degree sequence d,
uniformly at random (labeled vertices)

- Motivation:
- network science: generating graphs from a null model for
hypothesis testing

- testing software, algorithms

- simulations
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- Enumerate elements of G(d): the set is huge (exponential
in n), generally not feasible
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- Enumerate elements of G(d): the set is huge (exponential
in n), generally not feasible

- Stub pairing (configuration model)

- the probability of a multiedge or loop appearing tends to 1
exponentially quickly for regular graphs of degree
Q((logn)2 ™).

Booster shot: Rejection schemes (eg. Wormald et al.)

- Importance sampling by Bliztstein and Diaconis: the
distribution is known but not uniform, unknown variance
(quality of the sample is unknown)

- Monte Carlo Markov Chain (MCMC) methods =
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MCMC METHODS - PRELIMINARIES

- If the Markov-chain is irreducible, symmetric, and
aperiodic then the MC converges to the uniform
distribution

- Instead of exact, only require approximate sampling: the
sampled distribution is e close to the uniform distribution
in variation (¢;-)distance in poly(n) - loge~! steps (rapidly
mixing)
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JERRUM-SINCLAIR CHAIN

State space: G(d)U | ] §(d—1,—1,).
1,jJEV
Transitions: u.a.r. choose a,b € V(G), then
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JERRUM-SINCLAIR CHAIN

State space: G(d)U | ] §(d—1,—1,).
1,jJEV
Transitions: u.a.r. choose a,b € V(G), then

- If G € G(d), delete ab € E(G) if it exists.

- ifGeG(d—1,—1;)and deg(a) < d(a), try to add ab to
E(G). If deg,, ., (b) > d(b), then delete u.ar. an edge of b.
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P-STABILITY

The state space of JS chain: G(d) U Ui‘jevg(d —1,-1))

To get a sample from G(d) in reasonable time, we must have
(where n = dim(d))

Zi,j |9(d - llz' - ]1])|
15(d)]

< poly(n) Vde D.

In this case, we call 2 a P-stable class of degree sequences.

Theorem (Jerrum and Sinclair 1990)

The JS chain is rapidly mixing on degree sequences from a
P-stable class.
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EXAMPLE FOR A P-STABLE REGION

Theorem (Jerrum and Sinclair 1992)
The class of degree sequences satisfying
(A—38+1)%><45(n— A +1)is P-stable.

NS
PN
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has a unique realization

n _]12n>| o (3

1
Can be blown up to a non-pathological non-P-stable class.

(ho(n) —

| n € N} not P-stable: |§

{ho(n)
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A (SEEMINGLY PATHOLOGICAL) OBSTACLE

Breaker of (Markov) Chains Half-Graph of Erdés and Hajnal

Queen of Split Graphs Protector of Irregularity

ho(n)=(1,2,...,n—1,n,n,n+1,.,2n—1)

has a unique realization

{ho(n) | n € N} not P-stable: [G(hy(n) — 1, — )| ~ (255)"

Can be blown up to a non-pathological non-P-stable class.
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APPLICABILITY REMARKS

The cardinality of the state space of the JS chain can easily be
a factor of n® larger than G(d).

| 6(7,4,1,...) |



THE SWAP (SWITCH) MARKOV-CHAIN

Proposed by Kannan, Tetali, Vempala (1997)
State space: only the set of realizations G(d) of a deg. seq. d

Transitions: exchange edges with non-edges along a randomly
chosen alternating C, (least perturbation)

swap: —
1 1
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PREVIOUS RESULTS ON THE SWAP CHAIN

Rapid mixing of the Swap Markov chain shown by

simple bipartite directed

regular Cooper, Dyer, Greenhill 2007 Erdds et al. 2013 Greenhill 2011

A < cy/m  Greenhill and Sfragara 2018 Erdds, Miklos, M, Soltész 2018
Interval = Erdds, Miklos, M, Soltész 2018
(A—8)2<8(n—A) similar
strongly stable Amanatidis and Kleer 2019 =
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A UNIFYING RESULT

Theorem (Greenbhill, Erdds, Miklos, M, Soltész, Soukup 2019+)
The swap Markov-chain is rapidly mixing on P-stable degree
sequences (unconstrained, bipartite, directed)

- Proof: complex (based on the Jerrum-Sinclair method)
- Every previously known rapidly mixing region is P-stable

- Gao and Wormald (2016) describe several P-stable
regions, including power-law distribution-bounded degree
sequences fory > 1+ /3

- Power-law degree sequences with v > 2 are also
conjectured to be P-stable
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BEYOND P-STABILITY...?



P-STABILITY IS NOT NECESSARY FOR RAPID MIXING

Forall n,k € Z, let us define the bipartite degree sequence

1 2 3 - n—2 n—1 n—k
hk(")‘:( )

n—k n—1 n—2 - 3 2 1

Theorem (Erdds, Gy6ri, M, Milos, Soltész 2019+)
For any k € Z*, the swap Markov chain is rapidly mixing on

K, = {hk(n) > k;}
even though the class is not P-stable:

15 (g1 ()] = ()
|G(hy(n))]

Remark: the proof works up to k < c/logn for some c. 1418



PROOF OF RAPID MIXING FOR k = 1; GEOMETRIC REPRESENTATION

1 2 3 - m—2 n—1 n
hg(n) == ) ) . ) .
n n—1 n—2 .. & 2 1

1 2 3 v m—2 n—1 n-—1
hi(n):= .
n—1 n—-1 n-—-2 .. 3 2 1

Suppose G € G(hq(n)). What does H(n)AG look like?

n—1

1 2
< \\\\\ \\
Hy(n) S >
. S
n 7= i

n—i+1

-

15/18



PROOF OF RAPID MIXING FOR k = 1; GEOMETRIC REPRESENTATION

1 2 3 - m—2 n—1 n
hg(n) == ) ) . ) .
n n—1 n—2 .. & 2 1

1 2 3 v m—2 n—1 n-—1
hi(n):= .
n—1 n—-1 n-—-2 .. 3 2 1

Suppose G € G(hq(n)). What does H(n)AG look like?

3
|
—
3
|
—
3
|
.
+
—
V]
— e

15/18
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/\/ /'\
Hy(n)AG

L ]
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nfl n—1

Hy(n)AG is an z-monotone path!

Swap in this representation: moves a vertex of the path or deletes/inserts a pair of
adjacent vertices
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THE JERRUM-SINCLAIR METHOD

Let T contain a swap sequence X = Z;0Y, 2V, Z5Y .., 2" =Y

for each pair of realizations X,Y € §(d).

p(T'): max number of sequences through a Z

g(d).

£(T"): max length of a sequence in T’

Theorem (follows from Jerrum and Sinclair 1990)

) ) |§(<1;z§| (T - (log(15(d)]) + log(e™1))

16/18



11111




































ESTIMATING THE LOAD

Clearly, £(I") = O(n).
From Z, and L; and a O(logn) bits we can recover X and Y'!

= For a fix Z € G(d), the number of swap sequences of I'
passing through Z is at most the number of possible L, times

poly(n)!

Jerrum-Sinclair . .
= p(I') = poly(n) - |G(hy(n))] = Swap MC is rapidly
mixing on G(hy(n))!
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THANK YOU FOR LISTENING TO MY PRESENTATION!

HOMEPAGE: https://trm.hu

FULL PAPERS

UNIFIED APPROACH:
https://arxiv.org/abs/1903.06600

BEYOND P-STABILITY: COMING SOON.


https://trm.hu
https://arxiv.org/abs/1903.06600

THE SIMPLE AND DIRECTED ANALOGUES FOLLOW IMMEDIATELY

bipartite




THE JERRUM-SINCLAIR METHOD

Let f be a multicommodity-flow that sends 1 quantity of commodity
between each two realizations in the swap graph on G(d).

Theorem (follows from Jerrum and Sinclair 1990)

Tan(e) <t s S5 Qo190 + o)




DESIGNING THE MULTICOMMODITY-FLOW

- letG,G, € 5(d) =
E(G,)AE(G,) is a balanced red-blue graph

- Fix an alternating closed trail on E(G,)AE(G5)

- Crucial decision: decomposing the alternating trail into
"simpler” alternating circuits
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- letG,G, € 5(d) =
E(G,)AE(G,) is a balanced red-blue graph

- Fix an alternating closed trail on E(G,)AE(G5)

- Crucial decision: decomposing the alternating trail into
"simpler” alternating circuits

7 =
E(G,)AE(G,) \
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ELEMENTARY ALTERNATING CIRCUITS

Elementary alternating circuit: each vertex on the trail is either
visited once, or twice but with different parity
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visited once, or twice but with different parity

7’ \
1 L \
1 . \ Ay
. 4 \ N
T10 € e ® Ts ~
. AN
4 4
.
7’ I' -
P
. e
e T3 = XTg
ol Y
T S L7 T4
~ .
~ e
‘o ./
To T3

Sweep: the edges are exchanged with non-edges and vica versa from
x; In counter-clockwise order



	Appendix

	anm0: 
	0.100: 
	0.99: 
	0.98: 
	0.97: 
	0.96: 
	0.95: 
	0.94: 
	0.93: 
	0.92: 
	0.91: 
	0.90: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


