On the mixing time of switch Markov chains

Tamás Róbert Mezei
Combinatorics seminar, 29 October 2020
Alfréd Rényi Insitute of Mathematics

Introduction, background

Problem statement

- Given a non-negative integer sequence d of even sum, $\mathcal{G}(d)$ be the set of simple graph with degree sequence d (vertices are labeled)
- Problem: take a sample $G \in \mathcal{G}(d)$ uniformly and randomly ($\min d \geq 1$, $\max d \leq n-1$)
- Motivation:
- Randomized approximate counting: Jerrum, Valiant, Vazirani (1986)
- Hypothesis testing, statistics
- There is usually only one observed network, so experiments cannot be repeated
- Null model: structure of network explained by the properties of the deg. sequence
- Via sampling, statistical parameters of the null model can be measured
- Benchmarking software, algorithms, simulations (network science)

Stub pairing - configuration model

- Given a degree sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, take v_{i} with d_{i} half-edges $\forall i \in[1, n]$

Stub pairing - configuration model

- Given a degree sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, take v_{i} with d_{i} half-edges $\forall i \in[1, n]$
- Take a random complete matching between the half-edges $\left(\|d\|_{1} \in 2 \mathbb{N}\right)$.

Stub pairing - configuration model

- Given a degree sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, take v_{i} with d_{i} half-edges $\forall i \in[1, n]$
- Take a random complete matching between the half-edges $\left(\|d\|_{1} \in 2 \mathbb{N}\right)$.
- The resulting object may contain loops and multiedges.

Stub pairing - configuration model

Theorem (Bollobás, 1980)
The number of r-regular simple graphs on n (labeled) vertices is asymptotic to

$$
e^{-\lambda-\lambda^{2}} \cdot \frac{(2 m)!}{m!2^{m}(r!)^{n}}
$$

where $\lambda=\frac{1}{2}(r-1)$ and $m=\frac{1}{2} r n$.
(Bollobás actually enumerated most simple graphs with $\Delta \leq \sqrt{2 \log n}-1$).

Stub pairing - configuration model

Theorem (Bollobás, 1980)
The number of r-regular simple graphs on n (labeled) vertices is asymptotic to

$$
e^{-\lambda-\lambda^{2}} \cdot \frac{(2 m)!}{m!2^{m}(r!)^{n}}
$$

where $\lambda=\frac{1}{2}(r-1)$ and $m=\frac{1}{2} r n$.
(Bollobás actually enumerated most simple graphs with $\Delta \leq \sqrt{2 \log n}-1$).

- $r=\mathcal{O}(\sqrt{\log n}) \Longrightarrow$ with probability $\geq(\operatorname{poly}(n))^{-1}$, the configuration model does not produce loops or multiedges.

Stub pairing - configuration model

Theorem (Bollobás, 1980)
The number of r-regular simple graphs on n (labeled) vertices is asymptotic to

$$
e^{-\lambda-\lambda^{2}} \cdot \frac{(2 m)!}{m!2^{m}(r!)^{n}},
$$

where $\lambda=\frac{1}{2}(r-1)$ and $m=\frac{1}{2} r n$.
(Bollobás actually enumerated most simple graphs with $\Delta \leq \sqrt{2 \log n}-1$).

- $r=\mathcal{O}(\sqrt{\log n}) \Longrightarrow$ with probability $\geq(\operatorname{poly}(n))^{-1}$, the configuration model does not produce loops or multiedges.
- $r=\Omega\left((\log n)^{1 / 2+\varepsilon}\right) \Longrightarrow$ the probability that the configuration model does not produce a loop or a multiedge tends to 0 superpolynomially as $n \rightarrow \infty$.

Stub pairing - configuration model

Theorem (Bollobás, 1980)
The number of r-regular simple graphs on n (labeled) vertices is asymptotic to

$$
e^{-\lambda-\lambda^{2}} \cdot \frac{(2 m)!}{m!2^{m}(r!)^{n}},
$$

where $\lambda=\frac{1}{2}(r-1)$ and $m=\frac{1}{2} r n$.
(Bollobás actually enumerated most simple graphs with $\Delta \leq \sqrt{2 \log n}-1$).

- $r=\mathcal{O}(\sqrt{\log n}) \Longrightarrow$ with probability $\geq(\operatorname{poly}(n))^{-1}$, the configuration model does not produce loops or multiedges.
- $r=\Omega\left((\log n)^{1 / 2+\varepsilon}\right) \Longrightarrow$ the probability that the configuration model does not produce a loop or a multiedge tends to 0 superpolynomially as $n \rightarrow \infty$.
- A. Békéssy, P. Békéssy, J. Komlós 1972: asymptotic enumeration of p, q-regular $m+n$ vertex bipartite graphs

Stub pairing - rejection schemes

The algorithms below start with a sample from the configuration model then try to fix loops and multiedges; if they can't, the sample is rejected.

Theorem (McKay and Wormald, 1990)
Uniformly generate simple graphs satisfying $\Delta \leq \mathcal{O}\left(m^{\frac{1}{4}}\right)$ in $\mathcal{O}\left(\Delta^{4} n^{2}\right)$ expected time. Uniformly generate r-regular graphs for $r=o\left(n^{\frac{1}{3}}\right)$ in $\mathcal{O}\left(n r^{3}\right)$ expected time.

Theorem (Gao and Wormald, 2017)
Uniformly generate r-regular graphs for $r=o(\sqrt{n})$ in $\mathcal{O}\left(n r^{3}\right)$ expected time.
Theorem (Gao and Wormald, 2018)
Uniformly generate graphs whose degree sequence obeys a power-law distribution bound for some $\gamma>2.8811$.

Exact vs. approximate sampling

- The previous results all depend on the asymptotic counting of the number of realizations of the respective degree sequences
- Instead of exactly sampling the uniform distribution on $\mathcal{G}(d)$, allow an ε difference in total variation.

Definition (Polynomial-time approximate uniform sampler)
An algorithm running in $\operatorname{poly}(n) \cdot \log \varepsilon^{-1}$ (expected) time s.t. the ℓ_{1}-distance of the sample distribution is ε close to the uniform distribution is called a polynomial-time approximate uniform sampler.

Markov chain Monte Carlo methods

Markov Chains - a reminder

Definition (discrete time finite Markov chain)

$\mathcal{M}=(\Omega, P)$, where Ω is a finite state space, and $P=\left(p_{i j}\right)_{\omega_{i}, \omega_{j} \in \Omega}$ is the transition matrix, where $p_{i j}$ is the probability of moving from state ω_{i} to ω_{j}. Every step taken by the chain is independent from its previous steps and $\sum_{j} p_{i j}=1 \forall i$.

$$
G(\mathcal{M})=\left(\Omega,\left\{\omega_{i} \omega_{j} \mid p_{i j} \neq 0\right\}\right)
$$

- π_{0} : initial prob. distribution on Ω
- $\pi_{t}=\pi_{0} P^{t}$
- $p_{i j}=p_{j i} \forall i, j \Longrightarrow \pi \equiv|\Omega|^{-1}$ is a stationary distribution: $\pi=P \pi$

Markov Chains - a reminder

Definition (discrete time finite Markov chain)

$\mathcal{M}=(\Omega, P)$, where Ω is a finite state space, and $P=\left(p_{i j}\right)_{\omega_{i}, \omega_{j} \in \Omega}$ is the transition matrix, where $p_{i j}$ is the probability of moving from state ω_{i} to ω_{j}. Every step taken by the chain is independent from its previous steps and $\sum_{j} p_{i j}=1 \forall i$.

$$
G(\mathcal{M})=\left(\Omega,\left\{\omega_{i} \omega_{j} \mid p_{i j} \neq 0\right\}\right)
$$

- π_{0} : initial prob. distribution on Ω
- $\pi_{t}=\pi_{0} P^{t}$
- $p_{i j}=p_{j i} \forall i, j \Longrightarrow \pi \equiv|\Omega|^{-1}$ is a stationary distribution: $\pi=P \pi$

Markov Chains - a reminder

Definition (discrete time finite Markov chain)

$\mathcal{M}=(\Omega, P)$, where Ω is a finite state space, and $P=\left(p_{i j}\right)_{\omega_{i}, \omega_{j} \in \Omega}$ is the transition matrix, where $p_{i j}$ is the probability of moving from state ω_{i} to ω_{j}. Every step taken by the chain is independent from its previous steps and $\sum_{j} p_{i j}=1 \forall i$.

$$
G(\mathcal{M})=\left(\Omega,\left\{\omega_{i} \omega_{j} \mid p_{i j} \neq 0\right\}\right)
$$

- π_{0} : initial prob. distribution on Ω
- $\pi_{t}=\pi_{0} P^{t}$
- $p_{i j}=p_{j i} \forall i, j \Longrightarrow \pi \equiv|\Omega|^{-1}$ is a stationary distribution: $\pi=P \pi$

Markov Chains - a reminder

Definition (discrete time finite Markov chain)

$\mathcal{M}=(\Omega, P)$, where Ω is a finite state space, and $P=\left(p_{i j}\right)_{\omega_{i}, \omega_{j} \in \Omega}$ is the transition matrix, where $p_{i j}$ is the probability of moving from state ω_{i} to ω_{j}. Every step taken by the chain is independent from its previous steps and $\sum_{j} p_{i j}=1 \forall i$.

$$
G(\mathcal{M})=\left(\Omega,\left\{\omega_{i} \omega_{j} \mid p_{i j} \neq 0\right\}\right)
$$

- π_{0} : initial prob. distribution on Ω
- $\pi_{t}=\pi_{0} P^{t}$
- $p_{i j}=p_{j i} \forall i, j \Longrightarrow \pi \equiv|\Omega|^{-1}$ is a stationary distribution: $\pi=P \pi$

Markov Chains - a reminder

Definition (discrete time finite Markov chain)

$\mathcal{M}=(\Omega, P)$, where Ω is a finite state space, and $P=\left(p_{i j}\right)_{\omega_{i}, \omega_{j} \in \Omega}$ is the transition matrix, where $p_{i j}$ is the probability of moving from state ω_{i} to ω_{j}. Every step taken by the chain is independent from its previous steps and $\sum_{j} p_{i j}=1 \forall i$.

$$
G(\mathcal{M})=\left(\Omega,\left\{\omega_{i} \omega_{j} \mid p_{i j} \neq 0\right\}\right)
$$

- π_{0} : initial prob. distribution on Ω
- $\pi_{t}=\pi_{0} P^{t}$
- $p_{i j}=p_{j i} \forall i, j \Longrightarrow \pi \equiv|\Omega|^{-1}$ is a stationary distribution: $\pi=P \pi$

Markov Chains - a reminder

Definition (discrete time finite Markov chain)

$\mathcal{M}=(\Omega, P)$, where Ω is a finite state space, and $P=\left(p_{i j}\right)_{\omega_{i}, \omega_{j} \in \Omega}$ is the transition matrix, where $p_{i j}$ is the probability of moving from state ω_{i} to ω_{j}. Every step taken by the chain is independent from its previous steps and $\sum_{j} p_{i j}=1 \forall i$.

$$
G(\mathcal{M})=\left(\Omega,\left\{\omega_{i} \omega_{j} \mid p_{i j} \neq 0\right\}\right)
$$

- π_{0} : initial prob. distribution on Ω
- $\pi_{t}=\pi_{0} P^{t}$
- $p_{i j}=p_{j i} \forall i, j \Longrightarrow \pi \equiv|\Omega|^{-1}$ is a stationary distribution: $\pi=P \pi$

Markov Chains - a reminder

Definition (discrete time finite Markov chain)

$\mathcal{M}=(\Omega, P)$, where Ω is a finite state space, and $P=\left(p_{i j}\right)_{\omega_{i}, \omega_{j} \in \Omega}$ is the transition matrix, where $p_{i j}$ is the probability of moving from state ω_{i} to ω_{j}. Every step taken by the chain is independent from its previous steps and $\sum_{j} p_{i j}=1 \forall i$.

$$
G(\mathcal{M})=\left(\Omega,\left\{\omega_{i} \omega_{j} \mid p_{i j} \neq 0\right\}\right)
$$

- π_{0} : initial prob. distribution on Ω
- $\pi_{t}=\pi_{0} P^{t}$
- $p_{i j}=p_{j i} \forall i, j \Longrightarrow \pi \equiv|\Omega|^{-1}$ is a stationary distribution: $\pi=P \pi$

Markov Chains - a reminder

Definition (discrete time finite Markov chain)

$\mathcal{M}=(\Omega, P)$, where Ω is a finite state space, and $P=\left(p_{i j}\right)_{\omega_{i}, \omega_{j} \in \Omega}$ is the transition matrix, where $p_{i j}$ is the probability of moving from state ω_{i} to ω_{j}. Every step taken by the chain is independent from its previous steps and $\sum_{j} p_{i j}=1 \forall i$.

$$
G(\mathcal{M})=\left(\Omega,\left\{\omega_{i} \omega_{j} \mid p_{i j} \neq 0\right\}\right)
$$

- π_{0} : initial prob. distribution on Ω
- $\pi_{t}=\pi_{0} P^{t}$
- $p_{i j}=p_{j i} \forall i, j \Longrightarrow \pi \equiv|\Omega|^{-1}$ is a stationary distribution: $\pi=P \pi$

Markov Chains - a reminder

Definition (discrete time finite Markov chain)

$\mathcal{M}=(\Omega, P)$, where Ω is a finite state space, and $P=\left(p_{i j}\right)_{\omega_{i}, \omega_{j} \in \Omega}$ is the transition matrix, where $p_{i j}$ is the probability of moving from state ω_{i} to ω_{j}. Every step taken by the chain is independent from its previous steps and $\sum_{j} p_{i j}=1 \forall i$.

$$
G(\mathcal{M})=\left(\Omega,\left\{\omega_{i} \omega_{j} \mid p_{i j} \neq 0\right\}\right)
$$

- π_{0} : initial prob. distribution on Ω
- $\pi_{t}=\pi_{0} P^{t}$
- $p_{i j}=p_{j i} \forall i, j \Longrightarrow \pi \equiv|\Omega|^{-1}$ is a stationary distribution: $\pi=P \pi$

Convergence theorem, rate of convergence

Theorem

If $G(\mathcal{M})$ is connected and aperiodic, then $\pi_{t}\left(\omega_{j}\right) \rightarrow \pi\left(\omega_{j}\right)$ as $t \rightarrow \infty$ for any π_{0}.

- Convergence is exponentially quick, i.e., $\left|\pi_{t}\left(\omega_{j}\right)-\pi\left(\omega_{j}\right)\right| \leq \mu^{t}$ for some $\mu \in[0,1)$.
- Let λ_{2} be the second largest eigenvalue of P, then $\mu \leq \lambda_{2}$ (lazy chain)
- To get an approximate sampler, it is sufficient to have

$$
\begin{gathered}
t \geq \frac{1}{1-\lambda_{2}}(\log |\Omega|-\log \varepsilon) \\
t \cdot \log \lambda_{2} \leq t\left(\lambda_{2}-1\right) \leq \log \varepsilon-\log |\Omega| \\
\left|\pi_{t}\left(\omega_{j}\right)-\pi\left(\omega_{j}\right)\right| \leq\left(\lambda_{2}\right)^{t} \leq \varepsilon /|\Omega|
\end{gathered}
$$

The Sinclair method for estimating the eigenvalue-gap ($\pi \equiv 1 /|\Omega|$)

Let f be a multicommodity-flow which sends a commodity of quantity 1 between each pair of states $\omega_{i}, \omega_{j} \in \Omega$ in the Markov-graph $G(\mathcal{M})$.

Theorem (Sinclair, 1988)
The mixing time $\tau_{\mathcal{M}}(\varepsilon) \leq\left(\max _{p_{i j} \neq 0} \frac{1}{p_{i j}}\right) \cdot \frac{\rho(f) \cdot \ell(f)}{|\Omega|} \cdot(\log |\Omega|-\log \varepsilon)$

Rapid mixing

Theorem (Sinclair, 1988)
The mixing time $\tau_{\mathcal{M}}(\varepsilon) \leq\left(\max _{p_{i j} \neq 0} \frac{1}{p_{i j}}\right) \cdot \frac{\rho(f) \cdot \ell(f)}{|\Omega|} \cdot(\log |\Omega|-\log \varepsilon)$

Definition (Rapid/fast mixing)

We say that a Markov-chain \mathcal{M} is rapidly mixing if

$$
\tau_{\mathcal{M}}(\varepsilon) \leq \operatorname{poly}(\log |\Omega|,-\log \varepsilon) .
$$

In our applications we will have

$$
\log |\Omega| \leq \log \left(n^{\alpha}|\mathcal{G}(d)|\right) \leq \alpha \log n+m \log 2 m,
$$

thus rapid mixing implies that there exists a polynomial time approximate sampler.

Jerrum-Sinclair chain

State space: $\Omega=\mathcal{G}(d) \cup \bigcup_{i, j \in V} \mathcal{G}\left(d+\mathbb{1}_{i}+\mathbb{1}_{j}\right)$.
Transitions: u.a.r. choose $a, b \in V(G)$, then

Jerrum-Sinclair chain

State space: $\Omega=\mathcal{G}(d) \cup \bigcup_{i, j \in V} \mathcal{G}\left(d+\mathbb{1}_{i}+\mathbb{1}_{j}\right)$.
Transitions: u.a.r. choose $a, b \in V(G)$, then

- if $G \in \mathcal{G}(d)$ and $a b \notin E(G)$, add $a b$ to G.

Jerrum-Sinclair chain

State space: $\Omega=\mathcal{G}(d) \cup \bigcup_{i, j \in V} \mathcal{G}\left(d+\mathbb{1}_{i}+\mathbb{1}_{j}\right)$.
Transitions: u.a.r. choose $a, b \in V(G)$, then

- if $G \in \mathcal{G}(d)$ and $a b \notin E(G)$, add $a b$ to G.
- if $G \notin \mathcal{G}(d), a b \in E(G)$, and $\operatorname{deg}_{G}(a)>d(a)$, then delete $a b$ from $E(G)$. If $\operatorname{deg}_{G-a b}(b)<d(b)$, then u.a.r. add an edge to b.

P-stability

The state space of the JS-chain: $\mathcal{G}^{\prime}(d):=\mathcal{G}(d) \cup \bigcup_{i, j \in V} \mathcal{G}\left(d+\mathbb{1}_{i}+\mathbb{1}_{j}\right)$
To get a sample from $\mathcal{G}(d)$ in reasonable time by the JS-chain, we must have

Definition

$$
\left|\mathcal{G}^{\prime}(d)\right| \leq \operatorname{poly}(n) \cdot|\mathcal{G}(d)| \quad \forall d \in \mathcal{D}
$$

where $n=\operatorname{dim}(d)$. In this case, we call an infinite \mathcal{D} a P-stable class of degree sequences.
Theorem (Jerrum and Sinclair 1990)
The JS-chain is rapidly mixing on degree sequences from a P-stable class.

Some P-stable regions (Jerrum, McKay, and Sinclair, 1989)

Theorem

The degree sequences $d \in[1, \Delta]^{n}$ satisfying

$$
\Delta \leq 2 \sqrt{n}-2, d \in \mathbb{N}^{n}
$$

for any n are P-stable.

Theorem

The degree sequences d satisfying
$(\Delta-\delta+1)^{2} \leq 4 \delta(n-\Delta+1), d \in \mathbb{N}^{n}$
for any n are P-stable. (See the plot on the right.)

Some P-stable regions (Jerrum, McKay, and Sinclair, 1989)

Theorem

The degree sequences $d \in[1, \Delta]^{n}$ satisfying

$$
\Delta \leq 2 \sqrt{n}-2, d \in \mathbb{N}^{n}
$$

for any n are P-stable.

Theorem

The degree sequences d satisfying
$(\Delta-\delta+1)^{2} \leq 4 \delta(n-\Delta+1), d \in \mathbb{N}^{n}$
for any n are P-stable. (See the plot on the right.)

Some P-stable regions (Jerrum, McKay, and Sinclair, 1989)

Theorem

The degree sequences $d \in[1, \Delta]^{n}$ satisfying

$$
\Delta \leq 2 \sqrt{n}-2, d \in \mathbb{N}^{n}
$$

for any n are P-stable.

Theorem

The degree sequences d satisfying

Some P-stable regions (Jerrum, McKay, and Sinclair, 1989)

Theorem

The degree sequences $d \in[1, \Delta]^{n}$ satisfying

$$
\Delta \leq 2 \sqrt{n}-2, d \in \mathbb{N}^{n}
$$

for any n are P-stable.

Theorem

The degree sequences d satisfying
$(\Delta-\delta+1)^{2} \leq 4 \delta(n-\Delta+1), d \in \mathbb{N}^{n}$
for any n are P-stable. (See the plot on the right.)

Switch Markov chains

The switch Markov chain for simple and bipartite graphs

Proposed for bipartite graph by Kannan, Tetali, Vempala (1997)
State space: the set of realizations $\mathcal{G}(d)$ of a deg. seq. d
Transitions: exchange edges with non-edges along a randomly chosen alternating C_{4} (least perturbation)
switch:

The switch Markov chain for directed graphs

Proposed for bipartite graph by Kannan, Tetali, Vempala (1997)
State space: the set of realizations $\mathcal{G}(d)$ of a deg. seq. d
Transitions: exchange edges with non-edges along a randomly chosen alternating C_{4} (least perturbation)
switch:

directed \triangle :

Previous and recent results

Rapid mixing of the Switch Markov chain shown by

	simple	bipartite	directed
regular	Cooper, Dyer, Greenhill 2007	Erdős, Miklós, Soukup 2013	Greenhill 2011

Previous and recent results

Rapid mixing of the Switch Markov chain shown by			
regular	Cooper, Dyer, Greenhill 2007	Erdős, Miklós, Soukup 2013	Greenhill 2011
$\Delta \leq c \sqrt{m}$	Greenhill 2015	Erdős, Miklós, M, Soltész 2018	

Previous and recent results

Rapid mixing of the Switch Markov chain shown by			
segular	Cooper, Dyer, Greenhill 2007	Erdős, Miklós, Soukup 2013	Greenhill 2011
$\Delta \leq c \sqrt{m}$	Greenhill 2015	bipartite	directed
$[\delta, \Delta]$-type	Amanatidis and Kleer 2019 Miklós, M, Soltész 2018		

Early results - bipartite degree sequences

PL Erdős, TRM, I Miklós, D Soltész (2018)

Theorem
Let d be a bipartite degree sequence. On the set of d satisfying

$$
\Delta \leq \frac{1}{\sqrt{2}} \sqrt{m}
$$

the switch Markov chain is rapidly mixing. (Moreover, the set is P-stable).

Theorem

Let d be a bipartite degree sequence on U and V as classes. On the set of d satisfying

$$
\left(\Delta_{V}-\delta_{V}-1\right)^{+} \cdot\left(\Delta_{U}-\delta_{U}-1\right)^{+} \leq \max \left(\delta_{V}\left(|V|-\Delta_{U}\right), \delta_{U}\left(|U|-\Delta_{V}\right)\right),
$$

the switch Markov chain is rapidly mixing. (Moreover, the set is P-stable).

Early results - bipartite degree sequences

PL Erdős, TRM, I Miklós, D Soltész (2018)

Theorem
Let d be a bipartite degree sequence. On the set of d satisfying

$$
\Delta \leq \frac{1}{\sqrt{2}} \sqrt{m}
$$

the switch Markov chain is rapidly mixing. (Moreover, the set is P-stable).

Theorem

Let d be a bipartite degree sequence on U and V as classes. On the set of d satisfying

$$
\left(\Delta_{V}-\delta_{V}\right) \cdot\left(\Delta_{U}-\delta_{U}\right) \leq 4 \cdot \min \left(\delta_{V}\left(|V|-\Delta_{U}\right), \delta_{U}\left(|U|-\Delta_{V}\right)\right),
$$

the switch Markov chain is rapidly mixing. (Moreover, the set is P-stable).

Early results - directed degree sequences

PL Erdős, TRM, I Miklós, D Soltész (2018)

Theorem

Let d be a directed degree sequence. On the set of d satisfying

$$
\Delta_{\mathrm{out}}, \Delta_{\mathrm{in}} \leq \frac{1}{\sqrt{2}} \sqrt{m-4}
$$

the switch Markov chain is rapidly mixing. (Moreover, the set is P-stable).

Theorem

Let d be a directed degree sequence. On the set of d satisfying

$$
\left(\Delta_{\text {out }}-\delta_{\text {out }}\right) \cdot\left(\Delta_{\text {in }}-\delta_{\text {in }}\right) \leq \max \left(\delta_{\text {out }}\left(n-\Delta_{\text {in }}-1\right), \delta_{\text {in }}\left(n-\Delta_{\text {out }}-1\right)\right)+\mathcal{O}(n)
$$

the switch Markov chain is rapidly mixing. (Moreover, the set is P-stable).

An unpublished result

PL Erdős, TRM, I Miklós, D Soltész (2018)

The proof of the theorems on the previous slides contain the main ideas to proving the following result:

Theorem (unpublished)
The switch Markov chain is rapidly mixing on bipartite and directed P-stable degree sequences.

Goal: extend the theorem to simple graphs

Unified method to prove rapid mixing of switch chains on
 P-stable degree sequences

Primitive circuit trails

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

Definition

A closed walk $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4} \ldots, v_{2 k-1} v_{2 k}, v_{2 k} v_{1}$ (indices taken from $\mathbb{Z} / 2 k \mathbb{Z}$) which

- does not traverse the same edge twice and
- for any $i \neq j$ it satisfies $v_{i}=v_{j} \Leftrightarrow i \equiv j+1(\bmod 2)$
is called a primitive circuit trail.

Definition

We say that C is an alternating primitive circuit trail in X, if

- $v_{2 i-1} v_{2 i} \notin E(X)$ and
- $v_{2 i} v_{2 i+1} \in E(X)$
for $1 \leq i \leq k$.

Unified method

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

Let \mathfrak{M} denote a graph model, e.g.: simple, bipartite, directed, etc.

Theorem

Let X be an arbitrary \mathfrak{M} graph which contains an alternating primitive circuit trail C that traverses each of the vertices of X.

If for any such X there exists a sequence of switches transforming X into $X \triangle E(C)$ s.t.

- the length of the sequence is $\leq \operatorname{poly}_{\mathfrak{M}}(|V(X)|)$, and
- for any intermediate graph Z in the sequence and any \mathfrak{M} graph Y s.t. $E(C) \subseteq E(X) \triangle E(Y)$, there exists a graph $Z^{\prime} \in \mathcal{G}^{\prime}(d(Y))$ such that $\ell_{1}\left(A_{X}+A_{Y}-A_{Z}, A_{Z^{\prime}}\right) \leq c_{\mathfrak{M}}$
then the switch Markov chain is rapidly mixing on P-stable \mathfrak{M} degree sequences.

Bipartite graphs

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

- $C=\left(v_{1} v_{2}, \ldots, v_{15} v_{16}, v_{16} v_{1}\right)$
- Goal: find switch sequence $X, Z_{1}, Z_{2}, \ldots, X \triangle E(C)$
- C is a bipartite primitive circuit $\Longrightarrow C$ is a cycle

Bipartite graphs

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

- $C=\left(v_{1} v_{2}, \ldots, v_{15} v_{16}, v_{16} v_{1}\right)$
- Goal: find switch sequence $X, Z_{1}, Z_{2}, \ldots, X \triangle E(C)$
- C is a bipartite primitive circuit $\Longrightarrow C$ is a cycle
- red: original state in X, blue edge: flipped

Bipartite graphs

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

- $C=\left(v_{1} v_{2}, \ldots, v_{15} v_{16}, v_{16} v_{1}\right)$
- Goal: find switch sequence $X, Z_{1}, Z_{2}, \ldots, X \triangle E(C)$
- C is a bipartite primitive circuit $\Longrightarrow C$ is a cycle
- red: original state in X, blue edge: flipped

Bipartite graphs

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

- $C=\left(v_{1} v_{2}, \ldots, v_{15} v_{16}, v_{16} v_{1}\right)$
- Goal: find switch sequence $X, Z_{1}, Z_{2}, \ldots, X \triangle E(C)$
- C is a bipartite primitive circuit $\Longrightarrow C$ is a cycle
- red: original state in X, blue edge: flipped

Bipartite graphs

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

- $C=\left(v_{1} v_{2}, \ldots, v_{15} v_{16}, v_{16} v_{1}\right)$
- Goal: find switch sequence $X, Z_{1}, Z_{2}, \ldots, X \triangle E(C)$
- C is a bipartite primitive circuit $\Longrightarrow C$ is a cycle
- red: original state in X, blue edge: flipped

Bipartite graphs

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

- $C=\left(v_{1} v_{2}, \ldots, v_{15} v_{16}, v_{16} v_{1}\right)$
- Goal: find switch sequence $X, Z_{1}, Z_{2}, \ldots, X \triangle E(C)$
- C is a bipartite primitive circuit $\Longrightarrow C$ is a cycle
- red: original state in X, blue edge: flipped

Bipartite graphs

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

- $C=\left(v_{1} v_{2}, \ldots, v_{15} v_{16}, v_{16} v_{1}\right)$
- Goal: find switch sequence $X, Z_{1}, Z_{2}, \ldots, X \triangle E(C)$
- C is a bipartite primitive circuit $\Longrightarrow C$ is a cycle
- red: original state in X, blue edge: flipped

Bipartite graphs

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

- $C=\left(v_{1} v_{2}, \ldots, v_{15} v_{16}, v_{16} v_{1}\right)$
- Goal: find switch sequence $X, Z_{1}, Z_{2}, \ldots, X \triangle E(C)$
- C is a bipartite primitive circuit $\Longrightarrow C$ is a cycle
- red: original state in X, blue edge: flipped

Bipartite graphs

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

- $C=\left(v_{1} v_{2}, \ldots, v_{15} v_{16}, v_{16} v_{1}\right)$
- Goal: find switch sequence $X, Z_{1}, Z_{2}, \ldots, X \triangle E(C)$
- C is a bipartite primitive circuit $\Longrightarrow C$ is a cycle
- red: original state in X, blue edge: flipped

Bipartite graphs

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

- $C=\left(v_{1} v_{2}, \ldots, v_{15} v_{16}, v_{16} v_{1}\right)$
- Goal: find switch sequence $X, Z_{1}, Z_{2}, \ldots, X \triangle E(C)$
- C is a bipartite primitive circuit $\Longrightarrow C$ is a cycle
- red: original state in X, blue edge: flipped
- $A_{X}+A_{Y}-A_{Z}$: takes $0-1$ everywhere, except maybe at most two +2 on blue non-edge chords, and at most one -1 on a blue chord.

Coding - adjacency matrices

- $A_{X}+A_{Y}-A_{Z}$ is $0-1$ everywhere, except the first row
- The row of v_{1} contains at most two +2 and at most one -1 entries

	$A_{X}+A_{Y}-A_{Z}$								
Vertices	v_{2}	v_{4}	\ldots	\ldots	\ldots	$v_{2 j}$	\ldots	$v_{2 k}$	
v_{1}	0	1	\ldots	\ldots	\ldots	2	\cdots	0	
\vdots	\vdots	\vdots	\ddots	\vdots	\ddots	\vdots	\ddots	\vdots	
\vdots									
$v_{2 k-1}$	\vdots	\vdots	\ddots	\vdots	\ddots	\vdots	\ddots	\vdots	

Coding - adjacency matrices

- $A_{X}+A_{Y}-A_{Z}$ is $0-1$ everywhere, except the first row
- The row of v_{1} contains at most two +2 and at most one -1 entries

	$A_{X}+A_{Y}-A_{Z}$												
Vertices	v_{2}	v_{4}	\ldots	\ldots	\ldots	$v_{2 j}$	\ldots	$v_{2 k}$					
v_{1}	0	1	\ldots	\ldots	\cdots	2	\ldots	0					
\vdots	\vdots	\vdots	\ddots	\vdots	\ddots	\vdots	\ddots	\vdots					
\vdots	\vdots	\vdots	\ddots	\vdots	\ddots	\vdots	\ddots	\vdots					
$v_{2 k-1}$				\cdots		\cdots							

Coding - adjacency matrices

- $A_{X}+A_{Y}-A_{Z}$ is $0-1$ everywhere, except the first row
- The row of v_{1} contains at most two +2 and at most one -1 entries

	$A_{X}+A_{Y}-A_{Z}$								
Vertices	v_{2}	v_{4}	\ldots	$v_{2 \ell}$	\ldots	$v_{2 j}$	\ldots	$v_{2 k}$	
v_{1}	0	1	\ldots	\ldots	\ldots	2	\ldots	0	
\vdots	\vdots	\vdots	\ddots	\vdots	\ddots	\vdots	\ddots	\vdots	
$v_{2 i-1}$						0		\vdots	
\vdots	\vdots	\vdots	\ddots	\vdots	\ddots	\vdots	\ddots	\vdots	
$v_{2 k-1}$				\ldots		\ldots			
Min. row sum in v_{1}									

Coding - adjacency matrices

- $A_{X}+A_{Y}-A_{Z}$ is $0-1$ everywhere, except the first row
- The row of v_{1} contains at most two +2 and at most one -1 entries

Coding - adjacency matrices

- $A_{X}+A_{Y}-A_{Z}$ is $0-1$ everywhere, except the first row
- The row of v_{1} contains at most two +2 and at most one -1 entries

	0	$A_{X}+A_{Y}-A_{Z}$								
Vertices	v_{2}	v_{4}	\ldots	$v_{2 \ell}$	\ldots	$v_{2 j}$	\ldots	$v_{2 k}$		
v_{1}	\vdots	\vdots	\ddots	\wedge	\ddots	\vdots	\ddots	\vdots		
\vdots	\vdots	\vdots	\ddots	\vdots	\ddots	\vdots	\ddots	\vdots		
$v_{2 i-1}$				0		0		\vdots		
\vdots			\ldots		\ldots					
$v_{2 k-1}$										
Min. row sum in v_{1}										

Coding - adjacency matrices

- $A_{X}+A_{Y}-A_{Z}$ is $0-1$ everywhere, except the first row
- The row of v_{1} contains at most two +2 and at most one -1 entries

	$A_{X}+A_{Y}-A_{Z}+$ switch								
Vertices	v_{2}	v_{4}	\ldots	$v_{2 \ell}$	\ldots	$v_{2 j}$	\ldots	$v_{2 k}$	
v_{1}	0	1	\ldots	0	\cdots	1	\cdots	0	
\vdots	\vdots	\vdots	\ddots	\wedge	\ddots	\vdots	\ddots	\vdots	
$v_{2 i-1}$				-1		1		\vdots	
\vdots	\vdots	\vdots	\ddots	\vdots	\ddots	\vdots	\ddots	\vdots	
$v_{2 k-1}$				\cdots		\cdots			
Min. row sum in v_{1}									

Coding - adjacency matrices

- $A_{X}+A_{Y}-A_{Z}$ is $0-1$ everywhere, except the first row
- The row of v_{1} contains at most two +2 and at most one -1 entries
- With (at most two) switches and increasing the -1 entry by one, we turned $A_{X}+A_{Y}-A_{Z}$ into the adjacency matrix of some $Z^{\prime} \in \mathcal{G}\left(d(Y)+\mathbb{1}\left(v_{2 i-1}\right)+\mathbb{1}\left(v_{2 \ell}\right)\right)$

Vertices	$A_{X}+A_{Y}-A_{Z}+$ switch $+v_{2 i-1} v_{2 \ell}$							
	v_{2}	v_{4}	...	$v_{2 \ell}$...	$v_{2 j}$...	$v_{2 k}$
v_{1}	0	1	\ldots	0	\ldots	1	...	0
\vdots	:	:	\ddots	\wedge	\ddots	\vdots	\because	\vdots
$v_{2 i-1}$				0		1		\vdots
\vdots	\vdots	\vdots	\because	\vdots	\ddots	\vdots	\because	\vdots
$v_{2 k-1}$					
Min. row sum in v_{1}								

Simple graphs

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)
C primitive circuit trail \Longrightarrow

$$
\begin{array}{r}
\left|\left\{v_{2 i-1} \mid 1 \leq i \leq k\right\}\right|=k \\
\left|\left\{v_{2 i} \mid 1 \leq i \leq k\right\}\right|=k
\end{array}
$$

- Suppose $v_{1}=v_{8}$
- red: original state in X, blue edge: flipped

Simple graphs

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)
C primitive circuit trail \Longrightarrow

$$
\begin{array}{r}
\left|\left\{v_{2 i-1} \mid 1 \leq i \leq k\right\}\right|=k \\
\left|\left\{v_{2 i} \mid 1 \leq i \leq k\right\}\right|=k
\end{array}
$$

- Suppose $v_{1}=v_{8}$
- red: original state in X, blue edge: flipped

Simple graphs

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)
C primitive circuit trail \Longrightarrow

$$
\begin{aligned}
\left|\left\{v_{2 i-1} \mid 1 \leq i \leq k\right\}\right| & =k \\
\left|\left\{v_{2 i} \mid 1 \leq i \leq k\right\}\right| & =k
\end{aligned}
$$

- Suppose $v_{1}=v_{8}$
- red: original state in X, blue edge: flipped

Simple graphs

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)
C primitive circuit trail \Longrightarrow

$$
\begin{aligned}
\left|\left\{v_{2 i-1} \mid 1 \leq i \leq k\right\}\right| & =k \\
\left|\left\{v_{2 i} \mid 1 \leq i \leq k\right\}\right| & =k
\end{aligned}
$$

- Suppose $v_{1}=v_{8}$
- red: original state in X, blue edge: flipped

Simple graphs

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)
C primitive circuit trail \Longrightarrow

$$
\begin{array}{r}
\left|\left\{v_{2 i-1} \mid 1 \leq i \leq k\right\}\right|=k \\
\left|\left\{v_{2 i} \mid 1 \leq i \leq k\right\}\right|=k
\end{array}
$$

- Suppose $v_{1}=v_{8}$
- red: original state in X, blue edge: flipped

Simple graphs

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)
C primitive circuit trail \Longrightarrow

$$
\begin{array}{r}
\left|\left\{v_{2 i-1} \mid 1 \leq i \leq k\right\}\right|=k \\
\left|\left\{v_{2 i} \mid 1 \leq i \leq k\right\}\right|=k
\end{array}
$$

- Suppose $v_{1}=v_{8}$
- red: original state in X, blue edge: flipped

Simple graphs

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)
C primitive circuit trail \Longrightarrow

$$
\begin{aligned}
\left|\left\{v_{2 i-1} \mid 1 \leq i \leq k\right\}\right| & =k \\
\left|\left\{v_{2 i} \mid 1 \leq i \leq k\right\}\right| & =k
\end{aligned}
$$

- Suppose $v_{1}=v_{8}$
- red: original state in X, blue edge: flipped

Directed graphs

Let $D=\left(\left\{v_{1}, \ldots, v_{n}\right\}, A\right)$ be directed graph. Let

$$
\begin{aligned}
X(D) & =\left(\left\{v_{i}^{1} \mid 1 \leq i \leq n\right\},\left\{v_{i}^{2} \mid 1 \leq i \leq n\right\} ;\left\{v_{i}^{1} v_{j}^{2} \mid \overrightarrow{v_{i} v_{j}} \in A\right\}\right) \\
\mathcal{G}(\vec{d}) & \longleftrightarrow\left\{G \in \mathcal{G}_{\text {bipartite }}\left(\vec{d}_{\text {in }}, \vec{d}_{\text {out }}\right) \mid v_{i}^{1} v_{i}^{2} \notin E(G)\right\}
\end{aligned}
$$

Directed graphs

Let $D=\left(\left\{v_{1}, \ldots, v_{n}\right\}, A\right)$ be directed graph. Let

$$
\begin{aligned}
X(D) & =\left(\left\{v_{i}^{1} \mid 1 \leq i \leq n\right\},\left\{v_{i}^{2} \mid 1 \leq i \leq n\right\} ;\left\{v_{i}^{1} v_{j}^{2} \mid \overrightarrow{v_{i} v_{j}} \in A\right\}\right) \\
\mathcal{G}(\vec{d}) & \longleftrightarrow\left\{G \in \mathcal{G}_{\text {bipartite }}\left(\vec{d}_{\text {in }}, \vec{d}_{\text {out }}\right) \mid v_{i}^{1} v_{i}^{2} \notin E(G)\right\}
\end{aligned}
$$

Comparison to other stability based results

Other notions of stability

Definition (strong stability)
$\exists k \forall d \in \mathcal{D} \forall d^{\prime} \leq d$ s.t. $\left\|d^{\prime}-d\right\|_{1} \leq 2$ we have $\max _{G^{\prime} \in \mathcal{G}\left(d^{\prime}\right)} \min _{G \in \mathcal{G}(d)}\left|E(G) \triangle E\left(G^{\prime}\right)\right| \leq k$

Theorem (Amanatidis and Kleer 2019)
The switch chain is rapidly mixing on strongly-stable deg. sequences (simple, bipartite).
The proof relies on the rapid mixing of the JS-chain (it seems the proof cannot be extended beyond P-stable).

Other notions of stability

Definition (strong stability)

$\exists k \forall d \in \mathcal{D} \forall d^{\prime} \leq d$ s.t. $\left\|d^{\prime}-d\right\|_{1} \leq 2$ we have $\max _{G^{\prime} \in \mathcal{G}\left(d^{\prime}\right)} \min _{G \in \mathcal{G}(d)}\left|E(G) \triangle E\left(G^{\prime}\right)\right| \leq k$

Theorem (Amanatidis and Kleer 2019)

The switch chain is rapidly mixing on strongly-stable deg. sequences (simple, bipartite).

Definition (k-stability)

$$
\forall d \in \mathcal{D} \forall d^{\prime} \in \mathbb{N}^{n} \text { s.t. }\left\|d^{\prime}-d\right\|_{1} \leq k \text { we have }\left|\mathcal{G}\left(d^{\prime}\right)\right| \leq \operatorname{poly}(n) \cdot|\mathcal{G}(d)|
$$

where $n=\operatorname{dim}(d)$. In this case, we call \mathcal{D} a k-stable class of degree sequences.

Theorem (Gao and Greenhill 2020+)

The switch Markov-chain is rapidly mixing on 8-stable deg. sequences (simple, directed).

Mixing times

Bounds on the mixing time of the switch chain for typical known rapidly mixing classes of simple degree sequences

Amanatidis and Kleer (strongly stable)	$\tau(\varepsilon) \leq n^{48} \cdot(m \log 2 m-\log \varepsilon)$
Gao and Greenhill (8-stable)	$\tau(\varepsilon) \leq n^{42} \cdot(m \log 2 m-\log \varepsilon)$
P-stable	$\tau(\varepsilon) \leq n^{30} \cdot(m \log 2 m-\log \varepsilon)$

- P-stability $\Leftrightarrow 2$-stability.
- Both strong stability and 8-stability imply P-stability.
- Almost all of the known rapid mixing regions are 8 -stable and strongly-stable
- The above table tries to compare apples to oranges, the bounds are not verbatim quoted.

Heavy-tailed degree sequences

Suppose $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$. Let $J(d)=\sum_{i=1}^{d_{1}} d_{i}$.
Theorem (Gao and Greenhill 2020+)
The set of degree sequences d satisfying

$$
m(d)>J(d)+9 \Delta(d)+23
$$

is 8 -stable (hence P-stable).
Theorem (Gao and Greenhill 2020+)
The set of degree sequences d satisfying

$$
m(d)>J(d)+3 \Delta(d)+1
$$

is both strongly-stable and P-stable.

Heavy-tailed degree sequences

Suppose $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$. Let $J(d)=\sum_{i=1}^{d_{1}} d_{i}$.
Theorem (Gao and Greenhill 2020+)
The set of degree sequences d satisfying

$$
m(d)>J(d)+9 \Delta(d)+23
$$

is 8 -stable (hence P-stable).
Theorem (Gao and Greenhill 2020+)
The set of degree sequences d satisfying

$$
m(d)>J(d)+3 \Delta(d)+1
$$

is both strongly-stable and P-stable.
These results contain deg. sequences that obey a power-law distribution-bound for $\gamma>2$

Beyond P-stability...?

P-stability is not necessary for rapid mixing

For all $n, k \in \mathbb{Z}^{+}$, let us define the bipartite degree sequence

$$
h_{n}:=\left(\begin{array}{ccccccc}
1 & 2 & 3 & \cdots & n-2 & n-1 & n \\
n & n-1 & n-2 & \cdots & 3 & 2 & 1
\end{array}\right)
$$

Let the set of degree sequences which are k-close to h in ℓ_{1}-norm be

$$
B_{k}(d)=\left\{d^{\prime} \in \mathbb{N}^{n} \mid\left\|d^{\prime}-d\right\|_{1} \leq k\right\}
$$

Theorem (PL Erdős, E Győri, TRM, I Miklós, D Soltész 2020+)
For any $c \in \mathbb{R}^{+}$, the switch Markov chain is rapidly mixing on the non-P-stable class

$$
\bigcup_{k=1}^{\infty} B_{c \sqrt{\log n}}\left(h_{n}\right)
$$

Thank you for attending my ZOOM presentation!

Homepage: https://trm.hu

Full papers

https://doi.org/10.1371/journal.pone.0201995 https://arxiv.org/abs/1903.06600 https://arxiv.org/abs/1909.02308

Second moment

Theorem (Svante Janson 2006)

Let $\left(G_{n}\right)_{n=1}^{\infty}$ be a sequence of random multigraphs generated by the configuration model, such that $e\left(G_{n}\right)=\Theta(n)$. Then

$$
\liminf _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n} \text { is simple }\right) \Leftrightarrow \sum_{v \in V\left(G_{n}\right)} d_{G_{n}}(v)^{2}=\mathcal{O}(n)
$$

Theorem (Svante Janson 2020)

By randomly switching, TV dist goes to 0 .

Proof outline of rapid mixing on P-stable degree sequences

- Use the Jerrum-Sinclair result: construct a multicommodity-flow that sends a 1-flow between any two realizations in the Markov-graph such that no realization is overloaded
- Determining a flow between any two $X, Y \in \mathcal{G}(d)$
- Decompose $E(X) \Delta E(Y)$ into red/blue alternating circuit trails: the red and blue degrees are the same in $E(X) \Delta E(Y)$, because X and Y share the same degree sequence.
- Decompose alternating circuit trails into primitive alternating circuit trails
- Process primitive circuits: exchange edges with non-edges via the previous algorithm

Decomposing the symmetric difference $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

Decomposing the symmetric difference $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

Decomposing the symmetric difference $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

Decomposing the symmetric difference $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

Decomposing the symmetric difference $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

Decomposing the symmetric difference $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

Decomposing the symmetric difference $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

Decomposing the symmetric difference $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

Decomposing the symmetric difference $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

Decomposing the symmetric difference $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

Decomposing the symmetric difference $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

Sweeping primitive alternating circuits - demo on an extra special case

Sweeping primitive alternating circuits - demo on an extra special case

Sweeping primitive alternating circuits - demo on an extra special case

Sweeping primitive alternating circuits - demo on an extra special case

Sweeping primitive alternating circuits - demo on an extra special case

