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Introduction, background



Problem statement

- Given a non-negative integer sequence d of even sum, G(d) be the set of simple graph
with degree sequence d (vertices are labeled)

- Problem: take a sample G € G(d) uniformly and randomly (mind > 1, maxd < n — 1)

- Motivation:
- Randomized approximate counting: Jerrum, Valiant, Vazirani (1986)
- Hypothesis testing, statistics
- There is usually only one observed network, so experiments cannot be repeated

- Null model: structure of network explained by the properties of the deg. sequence
- Via sampling, statistical parameters of the null model can be measured

- Benchmarking software, algorithms, simulations (network science)
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Stub pairing - configuration model

LARCERER I A

- Given a degree sequence d = (dy,d,, ..., d,,), take v, with d, half-edges Vi € [1,n]
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Stub pairing - configuration model

- Given a degree sequence d = (dy,d,, ..., d,,), take v, with d, half-edges Vi € [1,n]
- Take a random complete matching between the half-edges (||d|; € 2N).

- The resulting object may contain loops and multiedges.
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Stub pairing - configuration model

Theorem (Bollobas, 1980)
The number of r-reqular simple graphs on n (labeled) vertices is asymptotic to
67)‘7)‘2 . M
mi2m (rhn’

where A = 1(r — 1) and m = irn.

(Bollobas actually enumerated most simple graphs with A < /2logn — 1).
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Stub pairing - configuration model

Theorem (Bollobas, 1980)
The number of r-reqular simple graphs on n (labeled) vertices is asymptotic to

(2m)!

S
mi2m (rhn’

where A = 1(r — 1) and m = irn.

(Bollobas actually enumerated most simple graphs with A < /2logn — 1).

- 7= 0(y/logn) = with probability > (poly(n))~!, the configuration model does not
produce loops or multiedges.

o p=W) ((10gn)1/2+5) — the probability that the configuration model does not
produce a loop or a multiedge tends to 0 superpolynomially as n — oo.

- A. Békéssy, P. Békéssy, ). Komlos 1972: asymptotic enumeration of p, g-regular m +n

vertex bipartite graphs
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Stub pairing - rejection schemes

The algorithms below start with a sample from the configuration model then try to fix loops
and multiedges; if they can't, the sample is rejected.

Theorem (McKay and Wormald, 1990)

Uniformly generate simple graphs satisfying A < O (mi ) in O(A%n?) expected time.
Uniformly generate r-regular graphs for r = o (n#) in O(nr®) expected time.
Theorem (Gao and Wormald, 2017)

Uniformly generate r-regular graphs for r = o (y/n) in O(nr3) expected time.

Theorem (Gao and Wormald, 2018)

Uniformly generate graphs whose degree sequence obeys a power-law distribution bound
for some v > 2.8811.
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Exact vs. approximate sampling

- The previous results all depend on the asymptotic counting of the number of
realizations of the respective degree sequences

- Instead of exactly sampling the uniform distribution on G(d), allow an ¢ difference in
total variation.

Definition (Polynomial-time approximate uniform sampler)

An algorithm running in poly(n) - loge~! (expected) time sit. the ¢, -distance of the sample
distribution is € close to the uniform distribution is called a polynomial-time approximate
uniform sampler.
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Markov chain Monte Carlo
methods




Markov Chains - a reminder

Definition (discrete time finite Markov chain)
M = (9, P), where Q is a finite state space, and P = (pij)wwjEQ is the transition matrix,
where p,; is the probability of moving from state w, to w;. Every step taken by the chain is

independent from its previous steps and ijij =1 V.
GM) = (Q, {%Wj ‘ Pij #0})
- m,: initial prob. distribution on

0 Gy = 7T0Pt

- py =p;Vi,j = m=|Q"" is a stationary
distribution: = = Pr
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Convergence theorem, rate of convergence

Theorem
If G(M) is connected and aperiodic, then m,(w;) — m(w;) as t — oo for any m,.

- Convergence is exponentially quick, i.e,,

my(w;) — m(w;)| < p' for some p € [0, 1).
- Let \, be the second largest eigenvalue of P, then p < A, (lazy chain)

- To get an approximate sampler, it is sufficient to have

t>

1
(log|2| —loge)
—\,

t-logA, <t(Ay —1) <loge—log|Q|

e (wj) = m(wy)l < (Ag)" < /19
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The Sinclair method for estimating the eigenvalue-gap (7 = 1/|9|)

Let f be a multicommodity-flow which sends a commodity of quantity 1 between each pair of states
w;,w; € Q in the Markov-graph G(M).

Q 7o (€) is the min. time st. |y Pt — 7| < e holds Vi > 7,,(¢)

p(f): max amount of flow through any w € Q

£(f): max length of a flow in f

(3)

@

On average, the flow through an w € Q is at most £(f)

Theorem (Sinclair, 1988)

1 )‘M.(logﬁl‘*bgg)

The mixing time 7,,(e) < (max —
M Pij70 Pij €|
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Rapid mixing

Theorem (Sinclair, 1988)
1 ) P - Af) (log || — loge)

The mixing time 7,,(e) < (max
J ) pi;70 Dij 12

Definition (Rapid/fast mixing)
We say that a Markov-chain M is rapidly mixing if

Tpm(€) < poly(log|©], —loge).

In our applications we will have

log |©2] <log(n®|G(d)|) < alogn + mlog2m,

thus rapid mixing implies that there exists a polynomial time approximate sampler.
10/27



Jerrum-Sinclair chain

State space: Q= G(d)U | ] G(d+ 1, +1,).
3,jEV
Transitions: u.a.r. choose a,b € V(G), then
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- IfG eg(d)and ab ¢ E(G), add abto G.
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Jerrum-Sinclair chain

State space: Q= G(d)U | ] G(d+ 1, +1,).
3,jEV
Transitions: u.a.r. choose a,b € V(G), then

- IfG eg(d)and ab ¢ E(G), add abto G.
- if G ¢ G(d), ab € E(G), and deg,(a) > d(a), then delete ab from E(G). If deg,, , (b) < d(b),

then u.a.r. add an edge to b.
v
> :
A
m

J

Gd+1,+1;)
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The state space of the JS-chain: G'(d) := G(d) U U Gd+1,+1;)

i,j€V
To get a sample from G(d) in reasonable time by the JS-chain, we must have

Definition
|G’ (d)| < poly(n) - |G(d)| Vd € D.

where n = dim(d). In this case, we call an infinite D a P-stable class of degree sequences.

Theorem (Jerrum and Sinclair 1990)
The JS-chain is rapidly mixing on degree sequences from a P-stable class.
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Some P-stable regions (Jerrum, McKay, and Sinclair, 1989)

Theorem i
The degree sequences d € [1, A]" 0
satisfying A

A<2yn—2,deN"
for any n are P-stable.

Theorem
The degree sequences d satisfying

(A—6+1)2 <45(n—A+1), d € N*

degree

for any n are P-stable. (See the
plot on the right.)

=
=l |
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The degree sequences d € [1, A]"
satisfying

A<2yn—2,deN"

for any n are P-stable.
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Some P-stable regions (Jerrum, McKay, and Sinclair, 1989)

Theorem =
The degree sequences d € [1, A]" 0
satisfying

>

A<2yn—2,deN"

Hn. %n +log" n - 1()54‘11}“ not P-stable!

for any n are P-stable.

Theorem
The degree sequences d satisfying

(A—5+1)2<4(n—A+1), d e N
degree

for any n are P-stable. (See the
plot on the right.)

=
=l |
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Switch Markov chains




The switch Markov chain for simple and bipartite graphs

Proposed for bipartite graph by Kannan, Tetali, Vempala (1997)
State space: the set of realizations G(d) of a deg. seq. d

Transitions: exchange edges with non-edges along a randomly chosen alternating C, (least
perturbation)

switch:
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The switch Markov chain for directed graphs

Proposed for bipartite graph by Kannan, Tetali, Vempala (1997)
State space: the set of realizations G(d) of a deg. seq. d

Transitions: exchange edges with non-edges along a randomly chosen alternating C, (least

perturbation)
( ;) .’—’/////

switch: T

7 \ 7N

directed /\: f\ — /\‘
B R
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Previous and recent results

Rapid mixing of the Switch Markov chain shown by

simple bipartite directed

regular Cooper, Dyer, Greenhill 2007  Erdds, Miklos, Soukup 2013 Greenhill 2011
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Previous and recent results

Rapid mixing of the Switch Markov chain shown by

simple bipartite directed

regular Cooper, Dyer, Greenhill 2007  Erdds, Miklos, Soukup 2013 Greenhill 2011

A <cy/m Greenhill 2015 Erdds, Miklos, M, Soltész 2018

[0, A]-type  Amanatidis and Kleer 2019 Erdds, Miklos, M, Soltész 2018
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Early results - bipartite degree sequences

PL Erdds, TRM, | Miklos, D Soltész (2018)

Theorem
Let d be a bipartite degree sequence. On the set of d satisfying

1
A< —ym,
T V2
the switch Markov chain is rapidly mixing. (Moreover, the set is P-stable).

Theorem
Let d be a bipartite degree sequence on U and V as classes. On the set of d satisfying

(Ay =0y =17 (Ay =y — 1)F <max (0(|V| = Ap), dp(|U| = Ay)),
the switch Markov chain is rapidly mixing. (Moreover, the set is P-stable).
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1
A< —ym,
T V2
the switch Markov chain is rapidly mixing. (Moreover, the set is P-stable).

Theorem
Let d be a bipartite degree sequence on U and V as classes. On the set of d satisfying

(Ay—dy) - (Ay — 0y) < 4-min (6(|V] — Ay), 6u(|U| — Ay)),
the switch Markov chain is rapidly mixing. (Moreover, the set is P-stable).
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Early results - directed degree sequences

PL Erdds, TRM, | Miklos, D Soltész (2018)

Theorem
Let d be a directed degree sequence. On the set of d satisfying

1 —
Aout?Ain < \7@ m_47

the switch Markov chain is rapidly mixing. (Moreover, the set is P-stable).

Theorem
Let d be a directed degree sequence. On the set of d satisfying

(A _ 6out) . (Ain _ 5in) < max (60ut (TL - Ain _ 1)’ 6in<n - Aout _ 1)) + O(”)?

out

the switch Markov chain is rapidly mixing. (Moreover, the set is P-stable).
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An unpublished result

PL Erdds, TRM, | Miklos, D Soltész (2018)

The proof of the theorems on the previous slides contain the main ideas to proving the
following result:

Theorem (unpublished)

The switch Markov chain is rapidly mixing on bipartite and directed P-stable degree
sequences.
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Unified method to prove rapid
mixing of switch chains on
P-stable degree sequences




Primitive circuit trails

PL Erdés, C Greenbhill, TRM, | Miklds, D Soltész, L Soukup (2019+)

Definition
A closed walk vy vy, Vovs, V30 .., Vg1 Vop, Vo; (indices taken from Z/2kZ) which

- does not traverse the same edge twice and

- forany i # j it satisflesv; =v; < i=j+1 (mod 2)
is called a primitive circuit trail.

Definition

We say that C'is an alternating primitive circuit trail in X, if
* Ug_1Vy; & E(X) and
" Va1 € E(X)

forl1 <i<k.
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Unified method

PL Erdés, C Greenbhill, TRM, | Miklds, D Soltész, L Soukup (2019+)

Let 91 denote a graph model, e.g.: simple, bipartite, directed, etc.
Theorem

Let X be an arbitrary 9 graph which contains an alternating primitive circuit trail C that
traverses each of the vertices of X.

If for any such X there exists a sequence of switches transforming X into XAE(C) s.t.

« the length of the sequence is < poly,, (|V(X)

), and
- for any intermediate graph Z in the sequence and any 9t graph Y's.t.

E(C) C E(X)AE(Y), there exists a graph Z' € G'(d(Y")) such that
G(Ax + Ay — Az, Ay) < g

then the switch Markov chain is rapidly mixing on P-stable 9t degree sequences.
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Bipartite graphs

PL Erdés, C Greenbhill, TRM, | Miklds, D Soltész, L Soukup (2019+)

* C = (v1g, -, V15016, V16Y1)

- Goal: find switch sequence
X, 2y, Zy, ..., XANE(C)

- C'is a bipartite primitive circuit
= (Clisacycle
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Bipartite graphs

PL Erdés, C Greenbhill, TRM, | Miklds, D Soltész, L Soukup (2019+)

* C = (vqVg, ..., 1516, V1671 ) ; V1o ; Z4
. 13 11
- Goal: find switch sequence ; ./’\. ;
X, 2y, Zy,..., XONE(C) o 7 ce

| /
i 7 //
- C'is a bipartite primitive circuit (2 / \ Vg

= (Clisacycle

- red: original state in X,
blue edge: flipped
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Bipartite graphs

PL Erdés, C Greenbhill, TRM, | Miklds, D Soltész, L Soukup (2019+)

* O = (0103, ..., V15016, V16V1)

- Goal: find switch sequence
X,Z,,Zy,..., XNE(C)

- C'is a bipartite primitive circuit
= (Clisacycle

- red: original state in X,
blue edge: flipped

- Ay +Ay— Ay takes0—1
everywhere, except maybe at
most two +2 on blue
non-edge chords, and at most
one —1 on a blue chord.
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Coding - adjacency matrices

- Ay + Ay — A, is0—1 everywhere,
except the first row

- The row of v; contains at most two
+2 and at most one —1 entries

Ax +Ay— Ay,
Vertices vy vy . o Vg . Uy
v, 0 1 e e 2 0

Vak—1
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Coding - adjacency matrices

- Ay + Ay — A, is0—1 everywhere,

except the first row Ay + Ay — Ay +switch
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Coding - adjacency matrices

- Ay + Ay — A, is0—1 everywhere,
except the first row

- The row of v; contains at most two
+2 and at most one —1 entries

- With (at most two) switches and
increasing the —1 entry by one,
we turned Ay + A, — A, into the
adjacency matrix of some
Z' € G(d(Y) + L(vy; 1) + L(vy))

Ax + Ay — A, +switch + vy, vy,

Vertices vy vy .. Vg .. Uy, Vop,
v o 1 - 0 - 1 - 0
. . . A . .

V2i—1 0 l

U2k—1

Min. row sum in vy
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Simple graphs

PL Erdés, C Greenbhill, TRM, | Miklds, D Soltész, L Soukup (2019+)

C primitive circuit trail =
v 1 [1<i <K} =k
{vgs [ 1<i <k} =k

- Suppose v; = vg
- red: original state in X,
blue edge: flipped

22/27



Simple graphs

PL Erdés, C Greenbhill, TRM, | Miklds, D Soltész, L Soukup (2019+)

C primitive circuit trail =
v 1 [1<i <K} =k
{vgs [ 1<i <k} =k

- Suppose v; = vg
- red: original state in X,
blue edge: flipped

22/27



Simple graphs

PL Erdés, C Greenbhill, TRM, | Miklds, D Soltész, L Soukup (2019+)

C primitive circuit trail =
v 1 [1<i <K} =k
{vgs [ 1<i <k} =k

- Suppose v; = vg
- red: original state in X,
blue edge: flipped

22/27



Simple graphs

PL Erdés, C Greenbhill, TRM, | Miklds, D Soltész, L Soukup (2019+)

C primitive circuit trail =
v 1 [1<i <K} =k
{vgs [ 1<i <k} =k

- Suppose v; = vg
- red: original state in X,
blue edge: flipped

22/27



Simple graphs

PL Erdés, C Greenbhill, TRM, | Miklds, D Soltész, L Soukup (2019+)

C primitive circuit trail =
v 1 [1<i <K} =k
{vgs [ 1<i <k} =k

- Suppose v; = vg
- red: original state in X,
blue edge: flipped

22/27



Simple graphs

PL Erdés, C Greenbhill, TRM, | Miklds, D Soltész, L Soukup (2019+)

C primitive circuit trail =
v 1 [1<i <K} =k
{vgs [ 1<i <k} =k

- Suppose v; = vg
- red: original state in X,
blue edge: flipped

22/27



Simple graphs

PL Erdés, C Greenbhill, TRM, | Miklds, D Soltész, L Soukup (2019+)

C primitive circuit trail =
v 1 [1<i <K} =k
{vgs [ 1<i <k} =k

- Suppose v; = vg
- red: original state in X,
blue edge: flipped

22/27



Directed graphs

Let D = ({vq,...,v,},A) be directed graph. Let

X(D) = ({v} |1 <i<n},{v?|1<i<n};{vI? | 7m; € A})

g(‘i) — {G € gbipartite (Jim dout) ‘v%v% ¢ E(G>}

2 1
Ty Ty
Ig o - - —-—-=-=-=--- o
1 / \ 2
\\ 7
L — Al !
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\\ 7
. o
2 1
x5 Xy
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Directed graphs

Let D = ({vq,...,v,},A) be directed graph. Let

X(D) = (e} | 1< i <n}, {02 |1 < < n}; {olo? | 50; € A})

g(‘i) — {G € gbipartite (Jim dout) ‘v%v% ¢ E(G>}
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Comparison to other stability
based results




Other notions of stability

Definition (strong stability)

JkVd e DVd <dst |d —d|, <2wehave max min |E(G)AE(G)| <k
G’'eG(d) Geg(d)

Theorem (Amanatidis and Kleer 2019)
The switch chain is rapidly mixing on strongly-stable deg. sequences (simple, bipartite).

The proof relies on the rapid mixing of the JS-chain (it seems the proof cannot be extended
beyond P-stable).
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Other notions of stability

Definition (strong stability)

JkVd e DVd <dst |d —d|; <2wehave max min [E(G)AE(G")| <k
G'€G(d’) GEG(d)

Theorem (Amanatidis and Kleer 2019)
The switch chain is rapidly mixing on strongly-stable deg. sequences (simple, bipartite).

Definition (k-stability)
Vd e DVd € N" st |d —d|; <k we have |G(d")| < poly(n) - |G(d)|

where n = dim(d). In this case, we call D a k-stable class of degree sequences.

Theorem (Gao and Greenhill 2020+)
The switch Markov-chain is rapidly mixing on 8-stable deg. sequences (simple, directed).
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Bounds on the mixing time of the switch chain
for typical known rapidly mixing classes of simple degree sequences

Amanatidis and Kleer (strongly stable) 7(g) < n*® . (mlog2m — loge)

Gao and Greenbhill (8-stable) 7(e) < n*2 - (mlog2m — loge)

P-stable 7(g) < n3% - (mlog2m — loge)

- P-stability < 2—stability.
- Both strong stability and 8-stability imply P-stability.
- Almost all of the known rapid mixing regions are 8-stable and strongly-stable

- The above table tries to compare apples to oranges, the bounds are not verbatim
quoted.
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Heavy-tailed degree sequences

Suppose d, > dy > .. . Let J(d Zd

Theorem (Gao and Greenhill 2020+)
The set of degree sequences d satisfying

m(d) > J(d) + 9A(d) + 23
is 8-stable (hence P-stable).

Theorem (Gao and Greenhill 2020+)
The set of degree sequences d satisfying

m(d) > J(d) +3A(d) + 1
is both strongly-stable and P-stable.
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Heavy-tailed degree sequences

Suppose d, > dy > .. . Let J(d Zd

Theorem (Gao and Greenhill 2020+)
The set of degree sequences d satisfying

m(d) > J(d) + 9A(d) + 23
is 8-stable (hence P-stable).

Theorem (Gao and Greenhill 2020+)
The set of degree sequences d satisfying

m(d) > J(d) +3A(d) + 1
is both strongly-stable and P-stable.

These results contain deg. sequences that obey a power-law distribution-bound for v > 2
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Beyond P-stability...?




P-stability is not necessary for rapid mixing

For all n,k € Z*, let us define the bipartite degree sequence

o 1 2 & - n—2 n—1 n
" \n n—1 n—2 - 3 2 1

Let the set of degree sequences which are k-close to h in ¢,-norm be

B,(d) = {d’ e N®

& —dl, <k}

Theorem (PL Erdds, E Gyéri, TRM, | Miklos, D Soltész 2020+)
For any ¢ € R*, the switch Markov chain is rapidly mixing on the non-P-stable class

U Beyrgalhn)
k=1
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Thank you for attending my ZOOM presentation!

Homepage: https://trm.hu

Full papers
https://doi.org/10.1371/journal.pone.0201995
https://arxiv.org/abs/1903.06600
https://arxiv.org/abs/1909.02308


https://trm.hu
https://doi.org/10.1371/journal.pone.0201995
https://arxiv.org/abs/1903.06600
https://arxiv.org/abs/1909.02308

Second moment

Theorem (Svante Janson 2006)

Let (G,,)22, be a sequence of random multigraphs generated by the configuration model,
such that e(G,,) = ©(n). Then

lim inf Pr(G,, is simple Z dg (v)" = 0(n)

n—00
veV(G,,)

Theorem (Svante Janson 2020)
By randomly switching, TV dist goes to O.



Proof outline of rapid mixing on P-stable degree sequences

- Use the Jerrum-Sinclair result: construct a multicommodity-flow that sends a 1-flow
between any two realizations in the Markov-graph such that no realization is
overloaded

- Determining a flow between any two X,Y € G(d)

- Decompose E(X)AE(Y) into red/blue alternating circuit trails: the red and blue degrees
are the same in E(X)AE(Y), because X and Y share the same degree sequence.

- Decompose alternating circuit trails into primitive alternating circuit trails

- Process primitive circuits: exchange edges with non-edges via the previous algorithm



Decomposing the symmetric difference E(X)AE(Y)

- Let s be a complete matching between the red and blue edges at each vertex
- Thus E(X)AE(Y) =W, W...wWW,, where each W, is an alternating-circuit

- Exchange the edges with non-edges in each alternating primitive circuit trail
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Sweeping primitive alternating circuits - demo on an extra special case
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