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Introduction, background



Problem statement

• Given a non-negative integer sequence 𝑑 of even sum, G(𝑑) be the set of simple graph
with degree sequence 𝑑 (vertices are labeled)

• Problem: take a sample 𝐺 ∈ G(𝑑) uniformly and randomly (min 𝑑 ≥ 1, max 𝑑 ≤ 𝑛 − 1)

• Motivation:
• Randomized approximate counting: Jerrum, Valiant, Vazirani (1986)

• Hypothesis testing, statistics
• There is usually only one observed network, so experiments cannot be repeated
• Null model: structure of network explained by the properties of the deg. sequence
• Via sampling, statistical parameters of the null model can be measured

• Benchmarking software, algorithms, simulations (network science)
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Stub pairing - configuration model

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6

• Given a degree sequence 𝑑 = (𝑑1, 𝑑2, … , 𝑑𝑛), take 𝑣𝑖 with 𝑑𝑖 half-edges ∀𝑖 ∈ [1, 𝑛]

• Take a random complete matching between the half-edges (‖𝑑‖1 ∈ 2N).

• The resulting object may contain loops and multiedges.
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Stub pairing - configuration model

Theorem (Bollobás, 1980)
The number of 𝑟-regular simple graphs on 𝑛 (labeled) vertices is asymptotic to

𝑒−𝜆−𝜆2 ⋅ (2𝑚)!
𝑚!2𝑚(𝑟!)𝑛 ,

where 𝜆 = 1
2 (𝑟 − 1) and 𝑚 = 1

2 𝑟𝑛.
(Bollobás actually enumerated most simple graphs with Δ ≤

√
2 log 𝑛 − 1).

• 𝑟 = O (
√

log 𝑛) ⟹ with probability ≥ (poly(𝑛))−1, the configuration model does not
produce loops or multiedges.

• 𝑟 = Ω ((log 𝑛)1/2+𝜀) ⟹ the probability that the configuration model does not
produce a loop or a multiedge tends to 0 superpolynomially as 𝑛 → ∞.

• A. Békéssy, P. Békéssy, J. Komlós 1972: asymptotic enumeration of 𝑝, 𝑞-regular 𝑚 + 𝑛
vertex bipartite graphs
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Stub pairing - rejection schemes

The algorithms below start with a sample from the configuration model then try to fix loops
and multiedges; if they can’t, the sample is rejected.

Theorem (McKay and Wormald, 1990)

Uniformly generate simple graphs satisfying Δ ≤ O (𝑚 1
4 ) in O(Δ4𝑛2) expected time.

Uniformly generate 𝑟-regular graphs for 𝑟 = 𝑜 (𝑛 1
3 ) in O(𝑛𝑟3) expected time.

Theorem (Gao and Wormald, 2017)
Uniformly generate 𝑟-regular graphs for 𝑟 = 𝑜 (

√
𝑛) in O(𝑛𝑟3) expected time.

Theorem (Gao and Wormald, 2018)
Uniformly generate graphs whose degree sequence obeys a power-law distribution bound
for some 𝛾 > 2.8811.
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Exact vs. approximate sampling

• The previous results all depend on the asymptotic counting of the number of
realizations of the respective degree sequences

• Instead of exactly sampling the uniform distribution on G(𝑑), allow an 𝜀 difference in
total variation.

Definition (Polynomial-time approximate uniform sampler)
An algorithm running in poly(𝑛) ⋅ log 𝜀−1 (expected) time s.t. the ℓ1-distance of the sample
distribution is 𝜀 close to the uniform distribution is called a polynomial-time approximate
uniform sampler.
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Markov chain Monte Carlo
methods



Markov Chains - a reminder

Definition (discrete time finite Markov chain)
M = (Ω, 𝑃), where Ω is a finite state space, and 𝑃 = (𝑝𝑖𝑗)𝜔𝑖,𝜔𝑗∈Ω is the transition matrix,
where 𝑝𝑖𝑗 is the probability of moving from state 𝜔𝑖 to 𝜔𝑗. Every step taken by the chain is
independent from its previous steps and ∑𝑗 𝑝𝑖𝑗 = 1 ∀𝑖.

• 𝜋0: initial prob. distribution on Ω

• 𝜋𝑡 = 𝜋0𝑃 𝑡

• 𝑝𝑖𝑗 = 𝑝𝑗𝑖∀𝑖, 𝑗 ⟹ 𝜋 ≡ |Ω|−1 is a stationary
distribution: 𝜋 = 𝑃𝜋

𝜔1

𝜔2

𝜔3

𝜔4

𝜔5

𝜔6

𝜔7

𝐺(M) = (Ω, {𝜔𝑖𝜔𝑗 | 𝑝𝑖𝑗 ≠ 0})

𝑝33 = 1/2

𝑝37 = 1/6

𝑝35 = 1/6

𝑝31 = 1/6

𝜔3

𝑡 = 0
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𝜔1

𝜔2

𝜔3

𝜔4

𝜔5

𝜔6

𝜔7
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𝜔3

𝑡 = 0
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𝜔2
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𝜔4

𝜔5

𝜔6

𝜔7

𝐺(M) = (Ω, {𝜔𝑖𝜔𝑗 | 𝑝𝑖𝑗 ≠ 0})

𝜔5

𝑡 = 1
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𝜔4
𝑡 = 2
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Convergence theorem, rate of convergence

Theorem
If 𝐺(M) is connected and aperiodic, then 𝜋𝑡(𝜔𝑗) → 𝜋(𝜔𝑗) as 𝑡 → ∞ for any 𝜋0.

• Convergence is exponentially quick, i.e., |𝜋𝑡(𝜔𝑗) − 𝜋(𝜔𝑗)| ≤ 𝜇𝑡 for some 𝜇 ∈ [0, 1).

• Let 𝜆2 be the second largest eigenvalue of 𝑃, then 𝜇 ≤ 𝜆2 (lazy chain)

• To get an approximate sampler, it is sufficient to have

𝑡 ≥ 1
1 − 𝜆2

(log |Ω| − log 𝜀)

𝑡 ⋅ log 𝜆2 ≤ 𝑡(𝜆2 − 1) ≤ log 𝜀 − log |Ω|

|𝜋𝑡(𝜔𝑗) − 𝜋(𝜔𝑗)| ≤ (𝜆2)𝑡 ≤ 𝜀/|Ω|
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The Sinclair method for estimating the eigenvalue-gap (𝜋 ≡ 1/|Ω|)

Let 𝑓 be a multicommodity-flow which sends a commodity of quantity 1 between each pair of states
𝜔𝑖, 𝜔𝑗 ∈ Ω in the Markov-graph 𝐺(M).

Ω

𝜔

𝜌(𝑓): max amount of flow through any 𝜔 ∈ Ω

ℓ(𝑓): max length of a flow in 𝑓

On average, the flow through an 𝜔 ∈ Ω is at most ℓ(𝑓) (|Ω|
2 )

|Ω|

𝜏M(𝜀) is the min. time s.t. |𝜋0𝑃 𝑡 − 𝜋| ≤ 𝜀 holds ∀𝑡 ≥ 𝜏M(𝜀)

Theorem (Sinclair, 1988)

The mixing time 𝜏M(𝜀) ≤ (max
𝑝𝑖𝑗≠0

1
𝑝𝑖𝑗

) ⋅ 𝜌(𝑓) ⋅ ℓ(𝑓)
|Ω|

⋅ (log |Ω| − log 𝜀)
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Rapid mixing

Theorem (Sinclair, 1988)

The mixing time 𝜏M(𝜀) ≤ (max
𝑝𝑖𝑗≠0

1
𝑝𝑖𝑗

) ⋅ 𝜌(𝑓) ⋅ ℓ(𝑓)
|Ω|

⋅ (log |Ω| − log 𝜀)

Definition (Rapid/fast mixing)
We say that a Markov-chainM is rapidly mixing if

𝜏M(𝜀) ≤ poly(log |Ω|, − log 𝜀).

In our applications we will have

log |Ω| ≤ log(𝑛𝛼|G(𝑑)|) ≤ 𝛼 log 𝑛 + 𝑚 log 2𝑚,

thus rapid mixing implies that there exists a polynomial time approximate sampler.
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Jerrum-Sinclair chain

State space: Ω = G(𝑑) ∪ ⋃
𝑖,𝑗∈𝑉

G(𝑑 + 1𝑖 + 1𝑗).

Transitions: u.a.r. choose 𝑎, 𝑏 ∈ 𝑉 (𝐺), then

• if 𝐺 ∈ G(𝑑) and 𝑎𝑏 ∉ 𝐸(𝐺), add 𝑎𝑏 to 𝐺.

• if 𝐺 ∉ G(𝑑), 𝑎𝑏 ∈ 𝐸(𝐺), and deg𝐺(𝑎) > 𝑑(𝑎), then delete 𝑎𝑏 from 𝐸(𝐺). If deg𝐺−𝑎𝑏(𝑏) < 𝑑(𝑏),
then u.a.r. add an edge to 𝑏.

11/27



Jerrum-Sinclair chain

State space: Ω = G(𝑑) ∪ ⋃
𝑖,𝑗∈𝑉

G(𝑑 + 1𝑖 + 1𝑗).

Transitions: u.a.r. choose 𝑎, 𝑏 ∈ 𝑉 (𝐺), then

• if 𝐺 ∈ G(𝑑) and 𝑎𝑏 ∉ 𝐸(𝐺), add 𝑎𝑏 to 𝐺.

• if 𝐺 ∉ G(𝑑), 𝑎𝑏 ∈ 𝐸(𝐺), and deg𝐺(𝑎) > 𝑑(𝑎), then delete 𝑎𝑏 from 𝐸(𝐺). If deg𝐺−𝑎𝑏(𝑏) < 𝑑(𝑏),
then u.a.r. add an edge to 𝑏.

𝑗

𝑖
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Jerrum-Sinclair chain

State space: Ω = G(𝑑) ∪ ⋃
𝑖,𝑗∈𝑉

G(𝑑 + 1𝑖 + 1𝑗).

Transitions: u.a.r. choose 𝑎, 𝑏 ∈ 𝑉 (𝐺), then

• if 𝐺 ∈ G(𝑑) and 𝑎𝑏 ∉ 𝐸(𝐺), add 𝑎𝑏 to 𝐺.

• if 𝐺 ∉ G(𝑑), 𝑎𝑏 ∈ 𝐸(𝐺), and deg𝐺(𝑎) > 𝑑(𝑎), then delete 𝑎𝑏 from 𝐸(𝐺). If deg𝐺−𝑎𝑏(𝑏) < 𝑑(𝑏),
then u.a.r. add an edge to 𝑏.

𝑗
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∈ ∈

𝑗 𝑗
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𝑘

𝑖
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𝑃-stability

The state space of the JS-chain: G′(𝑑) ∶= G(𝑑) ∪ ⋃
𝑖,𝑗∈𝑉

G(𝑑 + 1𝑖 + 1𝑗)

To get a sample from G(𝑑) in reasonable time by the JS-chain, we must have

Definition

|G′(𝑑)| ≤ poly(𝑛) ⋅ |G(𝑑)| ∀𝑑 ∈ D.

where 𝑛 = dim(𝑑). In this case, we call an infinite D a 𝑃-stable class of degree sequences.

Theorem (Jerrum and Sinclair 1990)
The JS-chain is rapidly mixing on degree sequences from a 𝑃-stable class.

12/27



Some 𝑃-stable regions (Jerrum, McKay, and Sinclair, 1989)

Theorem
The degree sequences 𝑑 ∈ [1, Δ]𝑛

satisfying

Δ ≤ 2
√

𝑛 − 2, 𝑑 ∈ N𝑛

for any 𝑛 are 𝑃-stable.

Theorem
The degree sequences 𝑑 satisfying

(Δ−𝛿 +1)2 ≤ 4𝛿(𝑛−Δ+1), 𝑑 ∈ N𝑛

for any 𝑛 are 𝑃-stable. (See the
plot on the right.)

1
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Switch Markov chains



The switch Markov chain for simple and bipartite graphs

Proposed for bipartite graph by Kannan, Tetali, Vempala (1997)

State space: the set of realizations G(𝑑) of a deg. seq. 𝑑

Transitions: exchange edges with non-edges along a randomly chosen alternating 𝐶4 (least
perturbation)

𝑝 = 1
3(𝑛

4)
switch:

directed △:
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The switch Markov chain for directed graphs

Proposed for bipartite graph by Kannan, Tetali, Vempala (1997)

State space: the set of realizations G(𝑑) of a deg. seq. 𝑑

Transitions: exchange edges with non-edges along a randomly chosen alternating 𝐶4 (least
perturbation)

𝑝 = 1
3(𝑛

4)
switch:

directed △:

14/27



Previous and recent results

Rapid mixing of the Switch Markov chain shown by

simple bipartite directed

regular Cooper, Dyer, Greenhill 2007 Erdős, Miklós, Soukup 2013 Greenhill 2011

Δ ≤ 𝑐
√

𝑚 Greenhill 2015 Erdős, Miklós, M, Soltész 2018

[𝛿, Δ]-type Amanatidis and Kleer 2019 Erdős, Miklós, M, Soltész 2018
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Early results - bipartite degree sequences

PL Erdős, TRM, I Miklós, D Soltész (2018)

Theorem
Let 𝑑 be a bipartite degree sequence. On the set of 𝑑 satisfying

Δ ≤ 1√
2

√
𝑚,

the switch Markov chain is rapidly mixing. (Moreover, the set is 𝑃-stable).

Theorem
Let 𝑑 be a bipartite degree sequence on 𝑈 and 𝑉 as classes. On the set of 𝑑 satisfying

(Δ𝑉 − 𝛿𝑉 − 1)+ ⋅ (Δ𝑈 − 𝛿𝑈 − 1)+ ≤ max (𝛿𝑉(|𝑉 | − Δ𝑈), 𝛿𝑈(|𝑈| − Δ𝑉)) ,

the switch Markov chain is rapidly mixing. (Moreover, the set is 𝑃-stable).

16/27



Early results - bipartite degree sequences

PL Erdős, TRM, I Miklós, D Soltész (2018)

Theorem
Let 𝑑 be a bipartite degree sequence. On the set of 𝑑 satisfying

Δ ≤ 1√
2

√
𝑚,

the switch Markov chain is rapidly mixing. (Moreover, the set is 𝑃-stable).

Theorem
Let 𝑑 be a bipartite degree sequence on 𝑈 and 𝑉 as classes. On the set of 𝑑 satisfying

(Δ𝑉 − 𝛿𝑉) ⋅ (Δ𝑈 − 𝛿𝑈) ≤ 4 ⋅ min (𝛿𝑉(|𝑉 | − Δ𝑈), 𝛿𝑈(|𝑈| − Δ𝑉)) ,

the switch Markov chain is rapidly mixing. (Moreover, the set is 𝑃-stable).

16/27



Early results - directed degree sequences

PL Erdős, TRM, I Miklós, D Soltész (2018)

Theorem
Let 𝑑 be a directed degree sequence. On the set of 𝑑 satisfying

Δout, Δin ≤ 1√
2

√
𝑚 − 4,

the switch Markov chain is rapidly mixing. (Moreover, the set is 𝑃-stable).

Theorem
Let 𝑑 be a directed degree sequence. On the set of 𝑑 satisfying

(Δout − 𝛿out) ⋅ (Δin − 𝛿in) ≤ max (𝛿out(𝑛 − Δin − 1), 𝛿in(𝑛 − Δout − 1)) + O(𝑛),

the switch Markov chain is rapidly mixing. (Moreover, the set is 𝑃-stable).
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An unpublished result

PL Erdős, TRM, I Miklós, D Soltész (2018)

The proof of the theorems on the previous slides contain the main ideas to proving the
following result:

Theorem (unpublished)
The switch Markov chain is rapidly mixing on bipartite and directed 𝑃-stable degree
sequences.

Goal: extend the theorem to simple graphs
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Unified method to prove rapid
mixing of switch chains on
𝑃-stable degree sequences



Primitive circuit trails

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

Definition
A closed walk 𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4 … , 𝑣2𝑘−1𝑣2𝑘, 𝑣2𝑘𝑣1 (indices taken from Z/2𝑘Z) which

• does not traverse the same edge twice and
• for any 𝑖 ≠ 𝑗 it satisfies 𝑣𝑖 = 𝑣𝑗 ⇔ 𝑖 ≡ 𝑗 + 1 (mod 2)

is called a primitive circuit trail.

Definition
We say that 𝐶 is an alternating primitive circuit trail in 𝑋, if

• 𝑣2𝑖−1𝑣2𝑖 ∉ 𝐸(𝑋) and
• 𝑣2𝑖𝑣2𝑖+1 ∈ 𝐸(𝑋)

for 1 ≤ 𝑖 ≤ 𝑘.
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Unified method

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

Let 𝔐 denote a graph model, e.g.: simple, bipartite, directed, etc.

Theorem
Let 𝑋 be an arbitrary 𝔐 graph which contains an alternating primitive circuit trail 𝐶 that
traverses each of the vertices of 𝑋.

If for any such 𝑋 there exists a sequence of switches transforming 𝑋 into 𝑋△𝐸(𝐶) s.t.

• the length of the sequence is ≤ poly𝔐(|𝑉 (𝑋)|), and
• for any intermediate graph 𝑍 in the sequence and any 𝔐 graph 𝑌 s.t.

𝐸(𝐶) ⊆ 𝐸(𝑋)△𝐸(𝑌 ), there exists a graph 𝑍′ ∈ G′(𝑑(𝑌 )) such that
ℓ1(𝐴𝑋 + 𝐴𝑌 − 𝐴𝑍, 𝐴𝑍′) ≤ 𝑐𝔐

then the switch Markov chain is rapidly mixing on 𝑃-stable 𝔐 degree sequences.
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Bipartite graphs

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

• 𝐶 = (𝑣1𝑣2, … , 𝑣15𝑣16, 𝑣16𝑣1)
• Goal: find switch sequence

𝑋, 𝑍1, 𝑍2, … , 𝑋△𝐸(𝐶)
• 𝐶 is a bipartite primitive circuit

⟹ 𝐶 is a cycle

• red: original state in 𝑋,
blue edge: flipped

• 𝐴𝑋 + 𝐴𝑌 − 𝐴𝑍: takes 0 − 1
everywhere, except maybe at
most two +2 on blue
non-edge chords, and at most
one −1 on a blue chord.

𝑣1

𝑣2

𝑣3 𝑣4
𝑣5

𝑣6

𝑣7

𝑣8

𝑣9

𝑣10

𝑣11
𝑣12𝑣13

𝑣14

𝑣15

𝑣16

𝑋△𝐸(𝐶)𝐶
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Coding - adjacency matrices

• 𝐴𝑋 + 𝐴𝑌 − 𝐴𝑍 is 0 − 1 everywhere,
except the first row

• The row of 𝑣1 contains at most two
+2 and at most one −1 entries

• With (at most two) switches and
increasing the −1 entry by one,
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Simple graphs

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

𝐶 primitive circuit trail ⟹
|{𝑣2𝑖−1 | 1 ≤ 𝑖 ≤ 𝑘}| = 𝑘

|{𝑣2𝑖 | 1 ≤ 𝑖 ≤ 𝑘}| = 𝑘

• Suppose 𝑣1 = 𝑣8

• red: original state in 𝑋,
blue edge: flipped

𝑣1

𝑣2

𝑣3 𝑣4
𝑣5

𝑣6

𝑣7

𝑣8

𝑣9

𝑣10

𝑣11
𝑣12𝑣13

𝑣14

𝑣15

𝑣16
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Directed graphs

Let 𝐷 = ({𝑣1, … , 𝑣𝑛}, 𝐴) be directed graph. Let

𝑋(𝐷) = ({𝑣1
𝑖 | 1 ≤ 𝑖 ≤ 𝑛}, {𝑣2

𝑖 | 1 ≤ 𝑖 ≤ 𝑛}; {𝑣1
𝑖 𝑣2

𝑗 | ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑖𝑣𝑗 ∈ 𝐴})

G( ⃗𝑑) ⟷ {𝐺 ∈ Gbipartite ( ⃗𝑑in, ⃗𝑑out) |𝑣1
𝑖 𝑣2

𝑖 ∉ 𝐸(𝐺)}

𝑥1
1

𝑥2
3

𝑥1
2𝑥2

1

𝑥1
3

𝑥2
2

𝑥1 𝑥2

𝑥3
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Comparison to other stability
based results



Other notions of stability

Definition (strong stability)
∃𝑘 ∀𝑑 ∈ D ∀𝑑′ ≤ 𝑑 s.t. ‖𝑑′ − 𝑑‖1 ≤ 2 we have max

𝐺′∈G(𝑑′)
min

𝐺∈G(𝑑)
|𝐸(𝐺)△𝐸(𝐺′)| ≤ 𝑘

Theorem (Amanatidis and Kleer 2019)
The switch chain is rapidly mixing on strongly-stable deg. sequences (simple, bipartite).

The proof relies on the rapid mixing of the JS-chain (it seems the proof cannot be extended
beyond 𝑃-stable).

Definition (𝑘-stability)

∀𝑑 ∈ D ∀𝑑′ ∈ N𝑛 s.t. ‖𝑑′ − 𝑑‖1 ≤ 𝑘 we have |G(𝑑′)| ≤ poly(𝑛) ⋅ |G(𝑑)|

where 𝑛 = dim(𝑑). In this case, we call D a 𝑘-stable class of degree sequences.

Theorem (Gao and Greenhill 2020+)
The switch Markov-chain is rapidly mixing on 8-stable deg. sequences (simple, directed).
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Mixing times

Bounds on the mixing time of the switch chain
for typical known rapidly mixing classes of simple degree sequences

Amanatidis and Kleer (strongly stable) 𝜏(𝜀) ≤ 𝑛48 ⋅ (𝑚 log 2𝑚 − log 𝜀)

Gao and Greenhill (8-stable) 𝜏(𝜀) ≤ 𝑛42 ⋅ (𝑚 log 2𝑚 − log 𝜀)

𝑃-stable 𝜏(𝜀) ≤ 𝑛30 ⋅ (𝑚 log 2𝑚 − log 𝜀)

• 𝑃-stability ⇔ 2−stability.
• Both strong stability and 8-stability imply 𝑃-stability.
• Almost all of the known rapid mixing regions are 8-stable and strongly-stable
• The above table tries to compare apples to oranges, the bounds are not verbatim
quoted.
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Heavy-tailed degree sequences

Suppose 𝑑1 ≥ 𝑑2 ≥ … ≥ 𝑑𝑛. Let 𝐽(𝑑) =
𝑑1

∑
𝑖=1

𝑑𝑖.

Theorem (Gao and Greenhill 2020+)
The set of degree sequences 𝑑 satisfying

𝑚(𝑑) > 𝐽(𝑑) + 9Δ(𝑑) + 23
is 8-stable (hence 𝑃-stable).

Theorem (Gao and Greenhill 2020+)
The set of degree sequences 𝑑 satisfying

𝑚(𝑑) > 𝐽(𝑑) + 3Δ(𝑑) + 1
is both strongly-stable and 𝑃-stable.

These results contain deg. sequences that obey a power-law distribution-bound for 𝛾 > 2
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Beyond 𝑃-stability…?



𝑃-stability is not necessary for rapid mixing

For all 𝑛, 𝑘 ∈ Z+, let us define the bipartite degree sequence

ℎ𝑛 ∶= ( 1 2 3 ⋯ 𝑛 − 2 𝑛 − 1 𝑛
𝑛 𝑛 − 1 𝑛 − 2 ⋯ 3 2 1

)

Let the set of degree sequences which are 𝑘-close to ℎ in ℓ1-norm be

𝐵𝑘(𝑑) = {𝑑′ ∈ N𝑛 ∣ ‖𝑑′ − 𝑑‖1 ≤ 𝑘}

Theorem (PL Erdős, E Győri, TRM, I Miklós, D Soltész 2020+)
For any 𝑐 ∈ R+, the switch Markov chain is rapidly mixing on the non-𝑃-stable class

∞
⋃
𝑘=1

𝐵𝑐
√

log 𝑛(ℎ𝑛)
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Thank you for attending my ZOOM presentation!

Homepage: https://trm.hu

Full papers
https://doi.org/10.1371/journal.pone.0201995

https://arxiv.org/abs/1903.06600
https://arxiv.org/abs/1909.02308
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Second moment

Theorem (Svante Janson 2006)
Let (𝐺𝑛)∞

𝑛=1 be a sequence of random multigraphs generated by the configuration model,
such that 𝑒(𝐺𝑛) = ϴ(𝑛). Then

lim inf
𝑛→∞

Pr(𝐺𝑛 is simple) ⇔ ∑
𝑣∈𝑉 (𝐺𝑛)

𝑑𝐺𝑛
(𝑣)2 = O(𝑛)

Theorem (Svante Janson 2020)
By randomly switching, TV dist goes to 0.



Proof outline of rapid mixing on 𝑃-stable degree sequences

• Use the Jerrum-Sinclair result: construct a multicommodity-flow that sends a 1-flow
between any two realizations in the Markov-graph such that no realization is
overloaded

• Determining a flow between any two 𝑋, 𝑌 ∈ G(𝑑)
• Decompose 𝐸(𝑋)Δ𝐸(𝑌) into red/blue alternating circuit trails: the red and blue degrees
are the same in 𝐸(𝑋)Δ𝐸(𝑌), because 𝑋 and 𝑌 share the same degree sequence.

• Decompose alternating circuit trails into primitive alternating circuit trails
• Process primitive circuits: exchange edges with non-edges via the previous algorithm



Decomposing the symmetric difference 𝐸(𝑋)Δ𝐸(𝑌 )

• Let 𝑠 be a complete matching between the red and blue edges at each vertex
• Thus 𝐸(𝑋)△𝐸(𝑌) = 𝑊1 ⊎ … ⊎ 𝑊𝑘, where each 𝑊𝑖 is an alternating-circuit
• Exchange the edges with non-edges in each alternating primitive circuit trail
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