On the mixing time of switch Markov chains

Tamás Róbert Mezei Combinatorics seminar, 29 October 2020

Alfréd Rényi Insitute of Mathematics

Introduction, background

- Given a non-negative integer sequence d of even sum, $\mathcal{G}(d)$ be the set of simple graph with degree sequence d (vertices are labeled)
- Problem: take a sample $G \in \mathcal{G}(d)$ uniformly and randomly $(\min d \ge 1, \max d \le n-1)$
- Motivation:
 - Randomized approximate counting: Jerrum, Valiant, Vazirani (1986)
 - Hypothesis testing, statistics
 - There is usually only one observed network, so experiments cannot be repeated
 - Null model: structure of network explained by the properties of the deg. sequence
 - Via sampling, statistical parameters of the null model can be measured
 - Benchmarking software, algorithms, simulations (network science)

$\bigvee_{v_1} \qquad \bigvee_{v_2} \qquad \bigvee_{v_3} \qquad \bigvee_{v_4} \qquad \bigvee_{v_5} \qquad \bigvee_{v_6}$

• Given a degree sequence $d = (d_1, d_2, \dots, d_n)$, take v_i with d_i half-edges $\forall i \in [1, n]$

- Given a degree sequence $d = (d_1, d_2, \dots, d_n)$, take v_i with d_i half-edges $\forall i \in [1, n]$
- Take a random complete matching between the half-edges ($||d||_1 \in 2\mathbb{N}$).

- Given a degree sequence $d = (d_1, d_2, \dots, d_n)$, take v_i with d_i half-edges $\forall i \in [1, n]$
- Take a random complete matching between the half-edges ($||d||_1 \in 2\mathbb{N}$).
- The resulting object may contain loops and multiedges.

Theorem (Bollobás, 1980)

The number of r-regular simple graphs on n (labeled) vertices is asymptotic to

$$e^{-\lambda-\lambda^2}\cdot \frac{(2m)!}{m!2^m(r!)^n}$$

where $\lambda = \frac{1}{2}(r-1)$ and $m = \frac{1}{2}rn$. (Bollobás actually enumerated most simple graphs with $\Delta \le \sqrt{2\log n} - 1$).

Theorem (Bollobás, 1980)

The number of r-regular simple graphs on n (labeled) vertices is asymptotic to

$$e^{-\lambda-\lambda^2}\cdot \frac{(2m)!}{m!2^m(r!)^n}$$

where $\lambda = \frac{1}{2}(r-1)$ and $m = \frac{1}{2}rn$. (Bollobás actually enumerated most simple graphs with $\Delta \le \sqrt{2\log n} - 1$).

• $r = \mathcal{O}(\sqrt{\log n}) \implies$ with probability $\geq (\operatorname{poly}(n))^{-1}$, the configuration model does not produce loops or multiedges.

Theorem (Bollobás, 1980)

The number of r-regular simple graphs on n (labeled) vertices is asymptotic to

$$e^{-\lambda-\lambda^2}\cdot \frac{(2m)!}{m!2^m(r!)^n}$$

where $\lambda = \frac{1}{2}(r-1)$ and $m = \frac{1}{2}rn$. (Bollobás actually enumerated most simple graphs with $\Delta \le \sqrt{2\log n} - 1$).

- $r = \mathcal{O}(\sqrt{\log n}) \implies$ with probability $\geq (\operatorname{poly}(n))^{-1}$, the configuration model does not produce loops or multiedges.
- $r = \Omega\left((\log n)^{1/2+\varepsilon}\right) \implies$ the probability that the configuration model does not produce a loop or a multiedge tends to 0 superpolynomially as $n \to \infty$.

Theorem (Bollobás, 1980)

The number of r-regular simple graphs on n (labeled) vertices is asymptotic to

$$e^{-\lambda-\lambda^2}\cdot\frac{(2m)!}{m!2^m(r!)^n}$$

where $\lambda = \frac{1}{2}(r-1)$ and $m = \frac{1}{2}rn$. (Bollobás actually enumerated most simple graphs with $\Delta \le \sqrt{2\log n} - 1$).

- $r = \mathcal{O}(\sqrt{\log n}) \implies$ with probability $\geq (\operatorname{poly}(n))^{-1}$, the configuration model does not produce loops or multiedges.
- $r = \Omega\left((\log n)^{1/2+\varepsilon}\right) \implies$ the probability that the configuration model does not produce a loop or a multiedge tends to 0 superpolynomially as $n \to \infty$.
- A. Békéssy, P. Békéssy, J. Komlós 1972: asymptotic enumeration of $p,q\mbox{-}{\rm regular}\;m+n$ vertex bipartite graphs

The algorithms below start with a sample from the configuration model then try to fix loops and multiedges; if they can't, the sample is **rejected**.

Theorem (McKay and Wormald, 1990)

Uniformly generate simple graphs satisfying $\Delta \leq \mathcal{O}\left(m^{\frac{1}{4}}\right)$ in $\mathcal{O}(\Delta^4 n^2)$ expected time. Uniformly generate r-regular graphs for $r = o\left(n^{\frac{1}{3}}\right)$ in $\mathcal{O}(nr^3)$ expected time.

Theorem (Gao and Wormald, 2017)

Uniformly generate r-regular graphs for $r = o(\sqrt{n})$ in $\mathcal{O}(nr^3)$ expected time.

Theorem (Gao and Wormald, 2018)

Uniformly generate graphs whose degree sequence obeys a power-law distribution bound for some $\gamma>2.8811$.

- The previous results all depend on the asymptotic counting of the number of realizations of the respective degree sequences
- Instead of exactly sampling the uniform distribution on $\mathcal{G}(d)$, allow an ε difference in total variation.

Definition (Polynomial-time approximate uniform sampler)

An algorithm running in $\operatorname{poly}(n) \cdot \log \varepsilon^{-1}$ (expected) time s.t. the ℓ_1 -distance of the sample distribution is ε close to the uniform distribution is called a polynomial-time approximate uniform sampler.

Markov chain Monte Carlo methods

Definition (discrete time finite Markov chain)

- + π_0 : initial prob. distribution on Ω
- $\cdot \ \pi_t = \pi_0 P^t$
- $p_{ij} = p_{ji} \forall i, j \implies \pi \equiv |\Omega|^{-1}$ is a stationary distribution: $\pi = P\pi$

Definition (discrete time finite Markov chain)

- + π_0 : initial prob. distribution on Ω
- $\cdot \ \pi_t = \pi_0 P^t$
- $p_{ij} = p_{ji} \forall i, j \implies \pi \equiv |\Omega|^{-1}$ is a stationary distribution: $\pi = P\pi$

Definition (discrete time finite Markov chain)

- + π_0 : initial prob. distribution on Ω
- $\cdot \ \pi_t = \pi_0 P^t$
- $p_{ij} = p_{ji} \forall i, j \implies \pi \equiv |\Omega|^{-1}$ is a stationary distribution: $\pi = P\pi$

Definition (discrete time finite Markov chain)

- + π_0 : initial prob. distribution on Ω
- $\cdot \ \pi_t = \pi_0 P^t$
- $p_{ij} = p_{ji} \forall i, j \implies \pi \equiv |\Omega|^{-1}$ is a stationary distribution: $\pi = P\pi$

Definition (discrete time finite Markov chain)

- + π_0 : initial prob. distribution on Ω
- $\cdot \ \pi_t = \pi_0 P^t$
- $p_{ij} = p_{ji} \forall i, j \implies \pi \equiv |\Omega|^{-1}$ is a stationary distribution: $\pi = P\pi$

Definition (discrete time finite Markov chain)

- + π_0 : initial prob. distribution on Ω
- $\cdot \ \pi_t = \pi_0 P^t$
- $p_{ij} = p_{ji} \forall i, j \implies \pi \equiv |\Omega|^{-1}$ is a stationary distribution: $\pi = P\pi$

Definition (discrete time finite Markov chain)

- π_0 : initial prob. distribution on Ω
- $\cdot \ \pi_t = \pi_0 P^t$
- $p_{ij} = p_{ji} \forall i, j \implies \pi \equiv |\Omega|^{-1}$ is a stationary distribution: $\pi = P\pi$

Definition (discrete time finite Markov chain)

- π_0 : initial prob. distribution on Ω
- $\cdot \ \pi_t = \pi_0 P^t$
- $p_{ij} = p_{ji} \forall i, j \implies \pi \equiv |\Omega|^{-1}$ is a stationary distribution: $\pi = P\pi$

Definition (discrete time finite Markov chain)

- π_0 : initial prob. distribution on Ω
- $\cdot \ \pi_t = \pi_0 P^t$
- $p_{ij} = p_{ji} \forall i, j \implies \pi \equiv |\Omega|^{-1}$ is a stationary distribution: $\pi = P\pi$

Convergence theorem, rate of convergence

Theorem

If $G(\mathcal{M})$ is connected and aperiodic, then $\pi_t(\omega_j) \to \pi(\omega_j)$ as $t \to \infty$ for any π_0 .

- Convergence is exponentially quick, i.e., $|\pi_t(\omega_j) \pi(\omega_j)| \le \mu^t$ for some $\mu \in [0, 1)$.
- · Let λ_2 be the second largest eigenvalue of *P*, then $\mu \leq \lambda_2$ (lazy chain)
- To get an approximate sampler, it is sufficient to have

$$\begin{split} t \geq \frac{1}{1 - \lambda_2} \left(\log |\Omega| - \log \varepsilon \right) \\ t \cdot \log \lambda_2 \leq t(\lambda_2 - 1) \leq \log \varepsilon - \log |\Omega| \\ \hline \left| \left| \pi_t(\omega_j) - \pi(\omega_j) \right| \leq \left(\lambda_2\right)^t \leq \varepsilon / |\Omega| \right] \end{split}$$

The Sinclair method for estimating the eigenvalue-gap ($\pi\equiv 1/|\Omega|$)

Let f be a multicommodity-flow which sends a commodity of quantity 1 between each pair of states $\omega_i, \omega_i \in \Omega$ in the Markov-graph $G(\mathcal{M})$.

 $au_{\mathcal{M}}(arepsilon)$ is the min. time s.t. $|\pi_0 P^t - \pi| \leq arepsilon$ holds $orall t \geq au_{\mathcal{M}}(arepsilon)$

 $\rho(f):$ max amount of flow through any $\omega\in\Omega$

 $\ell(f)$: max length of a flow in f

On average, the flow through an $\omega \in \Omega$ is at most $\ell(f) \frac{\binom{|\Omega|}{2}}{|\Omega|}$

Theorem (Sinclair, 1988)

$$\text{The mixing time } \tau_{\mathcal{M}}(\varepsilon) \leq \left(\max_{p_{ij} \neq 0} \frac{1}{p_{ij}}\right) \cdot \frac{\rho(f) \cdot \ell(f)}{|\Omega|} \cdot \left(\log |\Omega| - \log \varepsilon\right)$$

Rapid mixing

Theorem (Sinclair, 1988)

$$\text{The mixing time } \tau_{\mathcal{M}}(\varepsilon) \leq \left(\max_{p_{ij} \neq 0} \frac{1}{p_{ij}}\right) \cdot \frac{\rho(f) \cdot \ell(f)}{|\Omega|} \cdot \left(\log |\Omega| - \log \varepsilon\right)$$

Definition (Rapid/fast mixing)

We say that a Markov-chain ${\mathcal M}$ is rapidly mixing if

 $\tau_{\mathcal{M}}(\varepsilon) \leq \operatorname{poly}(\log |\Omega|, -\log \varepsilon).$

In our applications we will have

$$\log |\Omega| \le \log(n^{\alpha} |\mathcal{G}(d)|) \le \alpha \log n + m \log 2m,$$

thus rapid mixing implies that there exists a polynomial time approximate sampler.

Jerrum-Sinclair chain

 $\begin{array}{l} \text{State space: } \Omega = \mathcal{G}(d) \cup \bigcup_{i,j \in V} \mathcal{G}(d+\mathbb{1}_i+\mathbb{1}_j).\\ \text{Transitions: u.a.r. choose } a,b \in V(G)\text{, then} \end{array}$

Jerrum-Sinclair chain

 $\begin{array}{l} \text{State space: } \Omega = \mathcal{G}(d) \cup \bigcup_{i,j \in V} \mathcal{G}(d+\mathbbm{1}_i + \mathbbm{1}_j). \\ \text{Transitions: u.a.r. choose } a, b \in V(G), \text{ then} \end{array}$

• if $G \in \mathcal{G}(d)$ and $ab \notin E(G)$, add ab to G.

Jerrum-Sinclair chain

State space: $\Omega = \mathcal{G}(d) \cup \bigcup_{i,j \in V} \mathcal{G}(d + \mathbb{1}_i + \mathbb{1}_j).$ Transitions: u.a.r. choose $a, b \in V(G)$, then

- if $G \in \mathcal{G}(d)$ and $ab \notin E(G)$, add ab to G.
- if $G \notin \mathcal{G}(d)$, $ab \in E(G)$, and $\deg_G(a) > d(a)$, then delete ab from E(G). If $\deg_{G-ab}(b) < d(b)$, then u.a.r. add an edge to b.

The state space of the JS-chain: $\mathcal{G}'(d) := \mathcal{G}(d) \cup \bigcup_{i,j \in V} \mathcal{G}(d + \mathbbm{1}_i + \mathbbm{1}_j)$

To get a sample from $\mathcal{G}(d)$ in reasonable time by the JS-chain, we must have

Definition

 $|\mathcal{G}'(d)| \le \operatorname{poly}(n) \cdot |\mathcal{G}(d)| \quad \forall d \in \mathcal{D}.$

where $n = \dim(d)$. In this case, we call an infinite \mathcal{D} a *P*-stable class of degree sequences.

Theorem (Jerrum and Sinclair 1990)

The JS-chain is rapidly mixing on degree sequences from a P-stable class.

Theorem

The degree sequences $d \in [1,\Delta]^n$ satisfying

 $\Delta \leq 2\sqrt{n}-2, \ d \in \mathbb{N}^n$

for any n are P-stable.

Theorem

The degree sequences d satisfying

$$(\Delta-\delta+1)^2\leq 4\delta(n-\Delta+1),\;d\in\mathbb{N}^n$$

Theorem

The degree sequences $d \in [1,\Delta]^n$ satisfying

 $\Delta \leq 2\sqrt{n} - 2, \ d \in \mathbb{N}^n$

for any n are P-stable.

Theorem

The degree sequences d satisfying

$$(\Delta-\delta+1)^2\leq 4\delta(n-\Delta+1),\;d\in\mathbb{N}^n$$

Theorem

The degree sequences $d \in [1,\Delta]^n$ satisfying

 $\Delta \leq 2\sqrt{n} - 2, \ d \in \mathbb{N}^n$

for any n are P-stable.

Theorem

The degree sequences d satisfying

$$(\Delta-\delta+1)^2\leq 4\delta(n-\Delta+1),\;d\in\mathbb{N}^n$$

Theorem

The degree sequences $d \in [1,\Delta]^n$ satisfying

 $\Delta \le 2\sqrt{n} - 2, \ d \in \mathbb{N}^n$

for any n are P-stable.

Theorem

The degree sequences d satisfying

$$(\Delta-\delta+1)^2\leq 4\delta(n-\Delta+1),\;d\in\mathbb{N}^n$$

Switch Markov chains

Proposed for bipartite graph by Kannan, Tetali, Vempala (1997)

```
State space: the set of realizations \mathcal{G}(d) of a deg. seq. d
```

Transitions: exchange edges with non-edges along a randomly chosen alternating C_4 (least perturbation)

Proposed for bipartite graph by Kannan, Tetali, Vempala (1997)

```
State space: the set of realizations \mathcal{G}(d) of a deg. seq. d
```

Transitions: exchange edges with non-edges along a randomly chosen alternating C_4 (least perturbation)

Rapid mixing	ofthe	Switch	Markov	chain	shown	by
--------------	-------	--------	--------	-------	-------	----

	simple	bipartite	directed
regular	Cooper, Dyer, Greenhill 2007	Erdős, Miklós, Soukup 2013	Greenhill 2011

Rapid	mixing	of the	Switch	Markov	chain	shown	by	

	simple	bipartite	directed
regular	Cooper, Dyer, Greenhill 2007	Erdős, Miklós, Soukup 2013	Greenhill 2011
$\Delta \leq c \sqrt{m}$	Greenhill 2015	Erdős, Miklós, M, Solt	ész 2018

	Rapid mixing of the Switch Markov chain shown by										
		simple	bipartite	directed							
r	egular	Cooper, Dyer, Greenhill 2007	Erdős, Miklós, Soukup 2013	Greenhill 2011							
Δ	$\leq c\sqrt{m}$	Greenhill 2015	Erdős, Miklós, M, Solt	ész 2018							
$[\delta,$	Δ]-type	Amanatidis and Kleer 2019	Erdős, Miklós, M, Solt	ész 2018							

Early results - bipartite degree sequences

PL Erdős, TRM, I Miklós, D Soltész (2018)

Theorem

Let d be a bipartite degree sequence. On the set of d satisfying

$$\Delta \le \frac{1}{\sqrt{2}}\sqrt{m},$$

the switch Markov chain is rapidly mixing. (Moreover, the set is P-stable).

Theorem

Let d be a bipartite degree sequence on U and V as classes. On the set of d satisfying

$$(\Delta_V-\delta_V-1)^+\cdot (\Delta_U-\delta_U-1)^+ \leq \max\left(\delta_V(|V|-\Delta_U),\delta_U(|U|-\Delta_V)\right),$$

the switch Markov chain is rapidly mixing. (Moreover, the set is P-stable).

Early results - bipartite degree sequences

PL Erdős, TRM, I Miklós, D Soltész (2018)

Theorem

Let d be a bipartite degree sequence. On the set of d satisfying

$$\Delta \le \frac{1}{\sqrt{2}}\sqrt{m},$$

the switch Markov chain is rapidly mixing. (Moreover, the set is P-stable).

Theorem

Let d be a bipartite degree sequence on U and V as classes. On the set of d satisfying

$$\left(\Delta_V - \delta_V\right) \cdot \left(\Delta_U - \delta_U\right) \leq 4 \cdot \min\left(\delta_V(|V| - \Delta_U), \delta_U(|U| - \Delta_V)\right),$$

the switch Markov chain is rapidly mixing. (Moreover, the set is P-stable).

Early results - directed degree sequences

PL Erdős, TRM, I Miklós, D Soltész (2018)

Theorem

Let d be a directed degree sequence. On the set of d satisfying

$$\Delta_{\text{out}}, \Delta_{\text{in}} \leq \frac{1}{\sqrt{2}}\sqrt{m-4},$$

the switch Markov chain is rapidly mixing. (Moreover, the set is P-stable).

Theorem

Let d be a directed degree sequence. On the set of d satisfying

$$(\Delta_{\mathrm{out}} - \delta_{\mathrm{out}}) \cdot (\Delta_{\mathrm{in}} - \delta_{\mathrm{in}}) \leq \max\left(\delta_{\mathrm{out}}(n - \Delta_{\mathrm{in}} - 1), \delta_{\mathrm{in}}(n - \Delta_{\mathrm{out}} - 1)\right) + \mathcal{O}(n),$$

the switch Markov chain is rapidly mixing. (Moreover, the set is *P*-stable).

PL Erdős, TRM, I Miklós, D Soltész (2018)

The proof of the theorems on the previous slides contain the main ideas to proving the following result:

Theorem (unpublished)

The switch Markov chain is rapidly mixing on bipartite and directed *P*-stable degree sequences.

Goal: extend the theorem to simple graphs

Unified method to prove rapid mixing of switch chains on *P*-stable degree sequences

Primitive circuit trails

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

Definition

A closed walk $v_1v_2, v_2v_3, v_3v_4 \dots, v_{2k-1}v_{2k}, v_{2k}v_1$ (indices taken from $\mathbb{Z}/2k\mathbb{Z}$) which

- \cdot does not traverse the same edge twice and
- + for any $i \neq j$ it satisfies $v_i = v_j \Leftrightarrow i \equiv j+1 \pmod{2}$

is called a primitive circuit trail.

Definition

We say that C is an alternating primitive circuit trail in X, if

- * $v_{2i-1}v_{2i}\notin E(X)$ and
- $\cdot \ v_{2i}v_{2i+1} \in E(X)$

for $1 \leq i \leq k$.

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

Let ${\mathfrak M}$ denote a graph model, e.g.: simple, bipartite, directed, etc.

Theorem

Let X be an arbitrary \mathfrak{M} graph which contains an alternating primitive circuit trail C that traverses each of the vertices of X.

If for any such X there exists a sequence of switches transforming X into $X \triangle E(C)$ s.t.

- + the length of the sequence is $\leq \operatorname{poly}_{\mathfrak{M}}(|V(X)|)$, and
- for any intermediate graph Z in the sequence and any \mathfrak{M} graph Y s.t. $E(C) \subseteq E(X) \triangle E(Y)$, there exists a graph $Z' \in \mathcal{G}'(d(Y))$ such that $\ell_1(A_X + A_Y - A_Z, A_{Z'}) \leq c_{\mathfrak{M}}$

then the switch Markov chain is rapidly mixing on P-stable ${\mathfrak M}$ degree sequences.

- $\cdot \ C = (v_1v_2, \dots, v_{15}v_{16}, v_{16}v_1)$
- Goal: find switch sequence $X, Z_1, Z_2, \dots, X \triangle E(C)$
- C is a bipartite primitive circuit \implies C is a cycle

- $\cdot \ C = (v_1v_2, \ldots, v_{15}v_{16}, v_{16}v_1)$
- Goal: find switch sequence $X, Z_1, Z_2, \dots, X \triangle E(C)$
- C is a bipartite primitive circuit $\implies C$ is a cycle
- red: original state in *X*, blue edge: flipped

- $\cdot \ C = (v_1v_2, \dots, v_{15}v_{16}, v_{16}v_1)$
- Goal: find switch sequence $X, Z_1, Z_2, \dots, X \triangle E(C)$
- C is a bipartite primitive circuit $\implies C$ is a cycle
- red: original state in *X*, blue edge: flipped

- $\cdot \ C = (v_1v_2, \dots, v_{15}v_{16}, v_{16}v_1)$
- Goal: find switch sequence $X, Z_1, Z_2, \dots, X \triangle E(C)$
- C is a bipartite primitive circuit $\implies C$ is a cycle
- red: original state in *X*, blue edge: flipped

- $\cdot \ C = (v_1v_2, \dots, v_{15}v_{16}, v_{16}v_1)$
- Goal: find switch sequence $X, Z_1, Z_2, \dots, X \triangle E(C)$
- C is a bipartite primitive circuit \implies C is a cycle
- red: original state in *X*, blue edge: flipped

- $\cdot \ C = (v_1v_2, \ldots, v_{15}v_{16}, v_{16}v_1)$
- Goal: find switch sequence $X, Z_1, Z_2, \dots, X \triangle E(C)$
- C is a bipartite primitive circuit \implies C is a cycle
- red: original state in *X*, blue edge: flipped

- $\cdot \ C = (v_1v_2, \ldots, v_{15}v_{16}, v_{16}v_1)$
- Goal: find switch sequence $X, Z_1, Z_2, \dots, X \triangle E(C)$
- C is a bipartite primitive circuit $\implies C$ is a cycle
- red: original state in *X*, blue edge: flipped

- $\cdot \ C = (v_1v_2, \ldots, v_{15}v_{16}, v_{16}v_1)$
- Goal: find switch sequence $X, Z_1, Z_2, \dots, X \triangle E(C)$
- C is a bipartite primitive circuit $\implies C$ is a cycle
- red: original state in *X*, blue edge: flipped

- $\cdot \ C = (v_1v_2, \dots, v_{15}v_{16}, v_{16}v_1)$
- Goal: find switch sequence $X, Z_1, Z_2, \dots, X \triangle E(C)$
- C is a bipartite primitive circuit $\implies C$ is a cycle
- red: original state in *X*, blue edge: flipped

- $\cdot \ C = (v_1v_2, \dots, v_{15}v_{16}, v_{16}v_1)$
- Goal: find switch sequence $X, Z_1, Z_2, \dots, X \triangle E(C)$
- C is a bipartite primitive circuit \implies C is a cycle
- red: original state in *X*, blue edge: flipped
- $A_X + A_Y A_Z$: takes 0 1everywhere, except maybe at most two +2 on blue non-edge chords, and at most one -1 on a blue chord.

- * $A_X + A_Y A_Z$ is 0 1 everywhere, except the first row
- The row of v_1 contains at most two +2 and at most one -1 entries

$A_X + A_Y - A_Z$									
Vertices	v_2	v_4				v_{2j}		v_{2k}	
v_1	0	1				2		0	
:	÷	÷	·	÷	·	÷	·	÷	
:	:	:	·	:	·	:	·	:	
v_{2k-1}									

- $A_X + A_Y A_Z$ is 0 1 everywhere, except the first row
- The row of v_1 contains at most two +2 and at most one -1 entries

$A_X + A_Y - A_Z$									
Vertices	v_2	v_4				v_{2j}		v_{2k}	
v_1	0	1				2		0	
÷	÷	÷	۰.	÷	·	÷	·	÷	
	÷	÷	·.	÷	·.	÷	·.	÷	
v_{2k-1}									

- * $A_X + A_Y A_Z$ is 0 1 everywhere, except the first row
- The row of v_1 contains at most two +2 and at most one -1 entries

- * $A_X + A_Y A_Z$ is 0 1 everywhere, except the first row
- The row of v_1 contains at most two +2 and at most one -1 entries

$A_X + A_Y - A_Z$										
Vertices	v_2	v_4		$v_{2\ell}$		v_{2j}		v_{2k}		
v_1	0	1		0		2		0		
:	÷	÷	·	\wedge	·	÷	·	÷		
v_{2i-1}				1		0		÷		
÷	÷	÷	·	÷	·.	÷	·	÷		
v_{2k-1}										
		Min	. row	sum	in v_1					

- * $A_X + A_Y A_Z$ is 0 1 everywhere, except the first row
- The row of v_1 contains at most two +2 and at most one -1 entries

$A_X + A_Y - A_Z$											
Vertices	v_2	v_4		$v_{2\ell}$		v_{2j}		v_{2k}			
v_1	0	1		-1		2		0			
÷	:	:	·	\wedge	÷.	÷	·	÷			
v_{2i-1}				0		0		÷			
÷	÷	÷	·	÷	<i>ъ</i> .	÷	·	÷			
v_{2k-1}											
		Mir	n. row	sum	in v_1						

- * $A_X + A_Y A_Z$ is 0 1 everywhere, except the first row
- The row of v_1 contains at most two +2 and at most one -1 entries

$A_X + A_Y - A_Z$ +switch											
Vertices	v_2	v_4		$v_{2\ell}$		v_{2j}		v_{2k}			
v_1	0	1		0		1		0			
÷	÷	÷	·	\wedge	·	÷	·	÷			
v_{2i-1}				-1		1		÷			
÷	÷	÷	·	÷	·	÷	·	÷			
v_{2k-1}											
	Min. row sum in v_1										

- $A_X + A_Y A_Z$ is 0 1 everywhere, except the first row
- The row of v_1 contains at most two +2 and at most one -1 entries
- With (at most two) switches and increasing the -1 entry by one, we turned $A_X + A_Y A_Z$ into the adjacency matrix of some $Z' \in \mathcal{G}(d(Y) + \mathbb{1}(v_{2i-1}) + \mathbb{1}(v_{2\ell}))$

	$A_X + A_Y - A_Z + switch + v_{2i-1}v_{2\ell}$									
Vertices	v_2	v_4		$v_{2\ell}$		v_{2j}		v_{2k}		
v_1	0	1		0		1		0		
:	÷	÷	·	\wedge	·	÷	·	÷		
v_{2i-1}				0		1		÷		
:	÷	÷	·	÷	·	÷	·	÷		
v_{2k-1}										
Min. row sum in v_1										

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

- Suppose $v_1 = v_8$
- red: original state in *X*, blue edge: flipped

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

- Suppose $v_1 = v_8$
- red: original state in *X*, blue edge: flipped

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

- Suppose $v_1 = v_8$
- red: original state in *X*, blue edge: flipped

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

- Suppose $v_1 = v_8$
- red: original state in *X*, blue edge: flipped

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

- Suppose $v_1 = v_8$
- red: original state in *X*, blue edge: flipped

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

- Suppose $v_1 = v_8$
- red: original state in *X*, blue edge: flipped

PL Erdős, C Greenhill, TRM, I Miklós, D Soltész, L Soukup (2019+)

- Suppose $v_1 = v_8$
- red: original state in *X*, blue edge: flipped

Directed graphs

Let $D = (\{v_1, \dots, v_n\}, A)$ be directed graph. Let $X(D) = \left(\{v_i^1 \mid 1 \le i \le n\}, \{v_i^2 \mid 1 \le i \le n\}; \{v_i^1 v_j^2 \mid \overrightarrow{v_i v_j} \in A\}\right)$ $\mathcal{G}(\vec{d}) \longleftrightarrow \left\{ G \in \mathcal{G}_{\text{bipartite}}\left(\vec{d}_{\text{in}}, \vec{d}_{\text{out}}\right) \ |v_i^1 v_i^2 \notin E(G) \right\}$ x_{1}^{2} x_{2}^{1} x_3 x_{2}^{2} x_{3}^{1} x_1 x_2 x_{2}^{2} x_{1}^{1}

Directed graphs

Let $D = (\{v_1, \dots, v_n\}, A)$ be directed graph. Let $X(D) = \left(\{ v_i^1 \mid 1 \le i \le n \}, \{ v_i^2 \mid 1 \le i \le n \}; \{ v_i^1 v_j^2 \mid \overrightarrow{v_i v_j} \in A \} \right)$ $\mathcal{G}(\vec{d}) \longleftrightarrow \left\{ G \in \mathcal{G}_{\text{bipartite}}\left(\vec{d}_{\text{in}}, \vec{d}_{\text{out}}\right) | v_i^1 v_i^2 \notin E(G) \right\}$ x_{1}^{2} x_{2}^{1} x_3 x_{3}^{2} x_{3}^{1} x_1 x_2 x_{2}^{2} x_{1}^{1}
Comparison to other stability based results

Other notions of stability

Definition (strong stability)

 $\exists k \; \forall d \in \mathcal{D} \; \forall d' \leq d \; \text{s.t.} \; \|d' - d\|_1 \leq 2 \; \text{we have} \; \max_{G' \in \mathcal{G}(d')} \min_{G \in \mathcal{G}(d)} |E(G) \bigtriangleup E(G')| \leq k$

Theorem (Amanatidis and Kleer 2019)

The switch chain is rapidly mixing on **strongly-stable** deg. sequences (simple, bipartite).

The proof relies on the rapid mixing of the JS-chain (it seems the proof cannot be extended beyond *P*-stable).

Definition (strong stability) $\exists k \ \forall d \in \mathcal{D} \ \forall d' \leq d \text{ s.t. } \|d' - d\|_1 \leq 2 \text{ we have } \max_{G' \in \mathcal{G}(d')} \min_{G \in \mathcal{G}(d)} |E(G) \triangle E(G')| \leq k$

Theorem (Amanatidis and Kleer 2019)

The switch chain is rapidly mixing on strongly-stable deg. sequences (simple, bipartite).

Definition (*k*-stability)

 $\forall d \in \mathcal{D} \; \forall d' \in \mathbb{N}^n \text{ s.t. } \|d' - d\|_1 \leq k \text{ we have } |\mathcal{G}(d')| \leq \operatorname{poly}(n) \cdot |\mathcal{G}(d)|$

where $n = \dim(d)$. In this case, we call \mathcal{D} a *k*-stable class of degree sequences.

Theorem (Gao and Greenhill 2020+)

The switch Markov-chain is rapidly mixing on **8-stable** deg. sequences (simple, directed).

Bounds on the mixing time of the switch chain	
for typical known rapidly mixing classes of simple degree sequences	
Amanatidis and Kleer (strongly stable)	$\tau(\varepsilon) \leq n^{48} \cdot (m \log 2m - \log \varepsilon)$
Gao and Greenhill (8-stable)	$\tau(\varepsilon) \leq n^{42} \cdot (m \log 2m - \log \varepsilon)$
<i>P</i> -stable	$\tau(\varepsilon) \leq n^{30} \cdot (m \log 2m - \log \varepsilon)$

- *P*-stability \Leftrightarrow 2-stability.
- Both strong stability and 8-stability imply *P*-stability.
- Almost all of the known rapid mixing regions are 8-stable and strongly-stable
- The above table tries to compare apples to oranges, the bounds are not verbatim quoted.

Heavy-tailed degree sequences

Suppose
$$d_1 \geq d_2 \geq \ldots \geq d_n.$$
 Let $J(d) = \sum_{i=1}^{a_1} d_i.$

Theorem (Gao and Greenhill 2020+)

The set of degree sequences d satisfying

```
m(d) > J(d) + 9\Delta(d) + 23
```

is 8-stable (hence P-stable).

Theorem (Gao and Greenhill 2020+)

The set of degree sequences d satisfying

 $m(d) > J(d) + 3\Delta(d) + 1$

is both strongly-stable and P-stable.

Heavy-tailed degree sequences

Suppose
$$d_1 \geq d_2 \geq \ldots \geq d_n.$$
 Let $J(d) = \sum_{i=1}^{a_1} d_i.$

Theorem (Gao and Greenhill 2020+)

The set of degree sequences d satisfying

```
m(d) > J(d) + 9\Delta(d) + 23
```

is 8-stable (hence *P*-stable).

Theorem (Gao and Greenhill 2020+)

The set of degree sequences d satisfying

 $m(d) > J(d) + 3\Delta(d) + 1$

is both strongly-stable and P-stable.

These results contain deg. sequences that obey a power-law distribution-bound for $\gamma>2$

Beyond *P*-stability...?

For all $n,k\in\mathbb{Z}^+$, let us define the bipartite degree sequence

Let the set of degree sequences which are k-close to h in ℓ_1 -norm be

$$B_k(d) = \left\{ d' \in \mathbb{N}^n \; \Big| \; \|d' - d\|_1 \leq k \right\}$$

Theorem (PL Erdős, E Győri, TRM, I Miklós, D Soltész 2020+)

For any $c \in \mathbb{R}^+$, the switch Markov chain is rapidly mixing on the non-P-stable class

$$\bigcup_{k=1}^\infty B_{c\sqrt{\log n}}(h_n)$$

Thank you for attending my ZOOM presentation!

Homepage: https://trm.hu

Full papers

https://doi.org/10.1371/journal.pone.0201995
https://arxiv.org/abs/1903.06600
https://arxiv.org/abs/1909.02308

Theorem (Svante Janson 2006)

Let $(G_n)_{n=1}^{\infty}$ be a sequence of random multigraphs generated by the configuration model, such that $e(G_n) = \Theta(n)$. Then

$$\liminf_{n \to \infty} \Pr(G_n \text{ is simple}) \Leftrightarrow \sum_{v \in V(G_n)} d_{G_n}(v)^2 = \mathcal{O}(n)$$

Theorem (Svante Janson 2020)

By randomly switching, TV dist goes to 0.

- Use the Jerrum-Sinclair result: construct a multicommodity-flow that sends a 1-flow between any two realizations in the Markov-graph such that no realization is overloaded
- Determining a flow between any two $X, Y \in \mathcal{G}(d)$
 - Decompose $E(X)\Delta E(Y)$ into red/blue alternating circuit trails: the red and blue degrees are the same in $E(X)\Delta E(Y)$, because X and Y share the same degree sequence.
 - · Decompose alternating circuit trails into primitive alternating circuit trails
 - Process primitive circuits: exchange edges with non-edges via the previous algorithm

- Let s be a complete matching between the red and blue edges at each vertex
- Thus $E(\mathbf{X}) \triangle E(\mathbf{Y}) = W_1 \uplus ... \uplus W_k$, where each W_i is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

- Let s be a complete matching between the red and blue edges at each vertex
- Thus $E(\mathbf{X}) \triangle E(\mathbf{Y}) = W_1 \uplus ... \uplus W_k$, where each W_i is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

- Let s be a complete matching between the red and blue edges at each vertex
- Thus $E(\mathbf{X}) \triangle E(\mathbf{Y}) = W_1 \uplus ... \uplus W_k$, where each W_i is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

- Let *s* be a complete matching between the red and blue edges at each vertex
- Thus $E(\mathbf{X}) \triangle E(\mathbf{Y}) = W_1 \uplus ... \uplus W_k$, where each W_i is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

- Let *s* be a complete matching between the red and blue edges at each vertex
- Thus $E(\mathbf{X}) \triangle E(\mathbf{Y}) = W_1 \uplus ... \uplus W_k$, where each W_i is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

- Let *s* be a complete matching between the red and blue edges at each vertex
- Thus $E(X) \triangle E(Y) = W_1 \uplus ... \uplus W_k$, where each W_i is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

- Let *s* be a complete matching between the red and blue edges at each vertex
- Thus $E(\mathbf{X}) \triangle E(\mathbf{Y}) = W_1 \uplus ... \uplus W_k$, where each W_i is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

- Let *s* be a complete matching between the red and blue edges at each vertex
- Thus $E(X) \triangle E(Y) = W_1 \uplus ... \uplus W_k$, where each W_i is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

- Let *s* be a complete matching between the red and blue edges at each vertex
- Thus $E(\mathbf{X}) \triangle E(\mathbf{Y}) = W_1 \uplus ... \uplus W_k$, where each W_i is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

- Let *s* be a complete matching between the red and blue edges at each vertex
- Thus $E(X) \triangle E(Y) = W_1 \uplus ... \uplus W_k$, where each W_i is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

- Let *s* be a complete matching between the red and blue edges at each vertex
- Thus $E(X) \triangle E(Y) = W_1 \uplus ... \uplus W_k$, where each W_i is an alternating-circuit
- Exchange the edges with non-edges in each alternating primitive circuit trail

