Mixing time Of switch Markov chains and P-stability of degree sequences

Péter L. Erdős, Catherine S. Greenhill, Ervin Győri, István Miklós, Tamás Róbert Mezei, Dániel Soltész, Lajos Soukup
Hobart, University of Tasmania, 6 November 2019

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences
https://renyi.hu/?en
Personal homepage: https://trm.hu

INTRODUCTION

- Problem: given a non-negative integer sequence d of even sum, generate a graph $G \in \mathcal{G}(d)$ with degree sequence d, uniformly at random (labeled vertices)
- Motivation:
- network science: hypothesis testing
- there is usually only one observed network, so experiments cannot be repeated
- null model: structure of network can be explained by the properties of the degree sequence
- via sampling, statistical parameters of the null model can be measured
- testing software, algorithms
- simulations

POSSIBLE WAYS TO SAMPLE $\mathcal{G}(d)$

- Enumerate elements of $\mathcal{G}(d)$: the set is huge (exponential in n), generally not feasible

POSSIBLE WAYS TO SAMPLE $\mathcal{G}(d)$

- Enumerate elements of $\mathcal{G}(d)$: the set is huge (exponential in n), generally not feasible
- Stub pairing (configuration model)

Possible ways to sample $\mathcal{G}(d)$

- Enumerate elements of $\mathcal{G}(d)$: the set is huge (exponential in n), generally not feasible
- Stub pairing (configuration model)
- the probability of a multiedge or loop appearing tends to 1 exponentially quickly for regular graphs of degree $\Omega\left((\log n)^{\frac{1}{2}+\varepsilon}\right)$.
Booster shot: Rejection schemes (eg. Wormald et al.)

Possible ways to sample $\mathcal{G}(d)$

- Enumerate elements of $\mathcal{G}(d)$: the set is huge (exponential in n), generally not feasible
- Stub pairing (configuration model)
- the probability of a multiedge or loop appearing tends to 1 exponentially quickly for regular graphs of degree $\Omega\left((\log n)^{\frac{1}{2}+\varepsilon}\right)$.
Booster shot: Rejection schemes (eg. Wormald et al.)
- Importance sampling by Bliztstein and Diaconis: the distribution is known but not uniform, unknown variance (quality of the sample is unknown)

Possible ways to sample $\mathcal{G}(d)$

- Enumerate elements of $\mathcal{G}(d)$: the set is huge (exponential in n), generally not feasible
- Stub pairing (configuration model)
- the probability of a multiedge or loop appearing tends to 1 exponentially quickly for regular graphs of degree $\Omega\left((\log n)^{\frac{1}{2}+\varepsilon}\right)$.
Booster shot: Rejection schemes (eg. Wormald et al.)
- Importance sampling by Bliztstein and Diaconis: the distribution is known but not uniform, unknown variance (quality of the sample is unknown)
- Monte Carlo Markov Chain (MCMC) methods \Rightarrow

Markov Chains - A REminder

Our chains transition from state i to state j with some probability $p_{i, j}=p_{j, i}$ (symmetric), independently of time and previous steps

$$
\forall i \sum_{j} p_{i, j}=1
$$

Markov Chains - A REminder

Our chains transition from state i to state j with some probability $p_{i, j}=p_{j, i}$ (symmetric), independently of time and previous steps

$$
\forall i \sum_{j} p_{i, j}=1
$$

$$
t=1
$$

Markov Chains - A REminder

Our chains transition from state i to state j with some probability $p_{i, j}=p_{j, i}$ (symmetric), independently of time and previous steps

$$
\forall i \sum_{j} p_{i, j}=1
$$

$$
t=2
$$

Markov Chains - A REminder

Our chains transition from state i to state j with some probability $p_{i, j}=p_{j, i}$ (symmetric), independently of time and previous steps

$$
\forall i \sum_{j} p_{i, j}=1
$$

$$
t=2
$$

Markov Chains - A REminder

Our chains transition from state i to state j with some probability $p_{i, j}=p_{j, i}$ (symmetric), independently of time and previous steps

$$
\forall i \sum_{j} p_{i, j}=1
$$

$$
t=3
$$

Markov Chains - A REminder

Our chains transition from state i to state j with some probability $p_{i, j}=p_{j, i}$ (symmetric), independently of time and previous steps

$$
\forall i \sum_{j} p_{i, j}=1
$$

$$
t=3
$$

Markov Chains - A REminder

Our chains transition from state i to state j with some probability $p_{i, j}=p_{j, i}$ (symmetric), independently of time and previous steps

$$
\forall i \sum_{j} p_{i, j}=1
$$

$$
t=4
$$

Markov Chains - A REminder

Our chains transition from state i to state j with some probability $p_{i, j}=p_{j, i}$ (symmetric), independently of time and previous steps

$$
\forall i \sum_{j} p_{i, j}=1
$$

$$
t=4
$$

Markov Chains - A REminder

Our chains transition from state i to state j with some probability $p_{i, j}=p_{j, i}$ (symmetric), independently of time and previous steps

$$
\forall i \sum_{j} p_{i, j}=1
$$

$$
t=5
$$

MCMC METHODS - PRELIMINARIES

- If the Markov-chain is irreducible, symmetric, and aperiodic then the MC converges to the uniform distribution
- Instead of exact, only require approximate sampling: the sampled distribution is ε close to the uniform distribution in variation $\left(\ell_{1}-\right.$)distance in poly $(n) \cdot \log \varepsilon^{-1}$ steps (rapidly mixing)

JERRUM-SINCLAIR CHAIN

State space: $\mathcal{G}(d) \cup \bigcup_{i, j \in V} \mathcal{G}\left(d-\mathbb{1}_{i}-\mathbb{1}_{j}\right)$.
Transitions: u.a.r. choose $a, b \in V(G)$, then

Jerrum-Sinclair chain

State space: $\mathcal{G}(d) \cup \bigcup_{i, j \in V} \mathcal{G}\left(d-\mathbb{1}_{i}-\mathbb{1}_{j}\right)$.
Transitions: u.a.r. choose $a, b \in V(G)$, then

- if $G \in \mathcal{G}(d)$, delete $a b \in E(G)$ if it exists.

JERRUM-SINCLAIR CHAIN

State space: $\mathcal{G}(d) \cup \bigcup_{i, j \in V} \mathcal{G}\left(d-\mathbb{1}_{i}-\mathbb{1}_{j}\right)$.
Transitions: u.a.r. choose $a, b \in V(G)$, then

- if $G \in \mathcal{G}(d)$, delete $a b \in E(G)$ if it exists.
- if $G \in \mathcal{G}\left(d-\mathbb{1}_{i}-\mathbb{1}_{j}\right)$ and $\operatorname{deg}_{G}(a)<d(a)$, try to add $a b$ to $E(G)$. If $\operatorname{deg}_{G+a b}(b)>d(b)$, then delete u.a.r. an edge of b.

P-STABILITY

The state space of JS chain: $\mathcal{G}(d) \cup \bigcup_{i, j \in V} \mathcal{G}\left(d-\mathbb{1}_{i}-\mathbb{1}_{j}\right)$
To get a sample from $\mathcal{G}(d)$ in reasonable time, we must have (where $n=\operatorname{dim}(d)$)

$$
\frac{\sum_{i, j}\left|\mathcal{G}\left(d-\mathbb{1}_{i}-\mathbb{1}_{j}\right)\right|}{|\mathcal{G}(d)|} \leq \operatorname{poly}(n) \quad \forall d \in \mathcal{D}
$$

In this case, we call \mathcal{D} a P-stable class of degree sequences.

Theorem (Jerrum and Sinclair 1990)

The JS chain is rapidly mixing on degree sequences from a P-stable class.

EXAMPLE FOR A P-STABLE REGION

Theorem (Jerrum and Sinclair 1992)
The class of degree sequences satisfying
$(\Delta-\delta+1)^{2} \leq 4 \delta(n-\Delta+1)$ is P-stable.

A (seemingly pathological) obstacle

$\left\{h_{0}(n) \mid n \in \mathbb{N}\right\}$ not P-stable: $\left|\mathcal{G}\left(h_{0}(n)-\mathbb{1}_{n}-\mathbb{1}_{2 n}\right)\right| \approx\left(\frac{3+\sqrt{5}}{2}\right)^{n}$
Can be blown up to a non-pathological non-P-stable class.

APPLICABILITY REMARKS

The cardinality of the state space of the JS chain can easily be a factor of n^{8} larger than $\mathcal{G}(d)$.

The Switch Markov-chain

Proposed by Kannan, Tetali, Vempala (1997)
State space: only the set of realizations $\mathcal{G}(d)$ of a deg. seq. d
Transitions: exchange edges with non-edges along a randomly chosen alternating C_{4} (least perturbation)

switch:

The Switch Markov-chain

Proposed by Kannan, Tetali, Vempala (1997)
State space: only the set of realizations $\mathcal{G}(d)$ of a deg. seq. d
Transitions: exchange edges with non-edges along a randomly chosen alternating C_{4} (least perturbation)
switch:

directed \triangle :

Previous results on the Switch chain

Rapid mixing of the Switch Markov chain shown by			
segular	Cooper, Dyer, Greenhill 2007	Erdős et al. 2013	Greenhill 2011
$\Delta \leq c \sqrt{m}$	Greenhill and Sfragara 2018	Erdős, Miklós, M, Soltész 2018	
Interval	-	Erdős, Miklós, M, Soltész 2018	
strongly stable		$(\Delta-\delta)^{2} \leq \delta(n-\Delta)$	similar

A UNIFYING RESULT

Theorem (Greenhill, Erdős, Miklós, M, Soltész, Soukup 2019+)
The switch Markov-chain is rapidly mixing on P-stable degree sequences (unconstrained, bipartite, directed)

- Proof: complex (based on the Jerrum-Sinclair method)
- Every previously known rapidly mixing region is P-stable
- Gao and Wormald (2016) describe several P-stable regions, including power-law distribution-bounded degree sequences for $\gamma>1+\sqrt{3}$
- Power-law degree sequences with $\gamma>2$ are also conjectured to be P-stable

BEYOND P-STABILITY...?

P-STABILITY IS NOT NECESSARY FOR RAPID MIXING

For all $n, k \in \mathbb{Z}^{+}$, let us define the bipartite degree sequence

$$
h_{k}(n):=\left(\begin{array}{ccccccc}
1 & 2 & 3 & \cdots & n-2 & n-1 & n-k \\
n-k & n-1 & n-2 & \cdots & 3 & 2 & 1
\end{array}\right)
$$

Theorem (Erdős, Győri, M, Miklós, Soltész 2019+)

For any $k \in \mathbb{Z}^{+}$, the switch Markov chain is rapidly mixing on

$$
\mathcal{H}_{k}:=\left\{h_{k}(n): n \geq k\right\}
$$

even though the class is not P-stable:

$$
\frac{\left|\mathcal{G}\left(h_{k+1}(n)\right)\right|}{\left|\mathcal{G}\left(h_{k}(n)\right)\right|}=e^{\Omega_{k}(n)}
$$

Remark: the proof works up to $k \leq c \sqrt{\log n}$ for some c.

THE SIMPLE AND DIRECTED ANALOGUES FOLLOW IMMEDIATELY

bipartite

simple

directed

PROOF OF RAPID MIXING FOR $k=1$; GEOMETRIC REPRESENTATION

$$
\left.\begin{array}{c}
h_{0}(n):=\left(\begin{array}{ccccccc}
1 & 2 & 3 & \cdots & n-2 & n-1 & n \\
n & n-1 & n-2 & \cdots & 3 & 2 & 1
\end{array}\right) \\
h_{1}(n):=\left(\begin{array}{cccccc}
1 & 2 & 3 & \cdots & n-2 & n-1 \\
n-1 & n-1 & n-2 & \cdots & 3 & 2
\end{array}\right] 1
\end{array}\right) .
$$

Suppose $G \in \mathcal{G}\left(h_{1}(n)\right)$. What does $H_{0}(n) \triangle G$ look like?

PROOF OF RAPID MIXING FOR $k=1$; GEOMETRIC REPRESENTATION

$$
\left.\begin{array}{c}
h_{0}(n):=\left(\begin{array}{ccccccc}
1 & 2 & 3 & \cdots & n-2 & n-1 & n \\
n & n-1 & n-2 & \cdots & 3 & 2 & 1
\end{array}\right) \\
h_{1}(n):=\left(\begin{array}{cccccc}
1 & 2 & 3 & \cdots & n-2 & n-1 \\
n-1 & n-1 & n-2 & \cdots & 3 & 2
\end{array}\right] 1
\end{array}\right) .
$$

Suppose $G \in \mathcal{G}\left(h_{1}(n)\right)$. What does $H_{0}(n) \triangle G$ look like?

PROOF OF RAPID MIXING FOR $k=1$; GEOMETRIC REPRESENTATION

$$
\begin{aligned}
& h_{0}(n):=\left(\begin{array}{ccccccc}
1 & 2 & 3 & \cdots & n-2 & n-1 & n \\
n & n-1 & n-2 & \cdots & 3 & 2 & 1
\end{array}\right) \\
& h_{1}(n):=\left(\begin{array}{ccccccc}
1 & 2 & 3 & \cdots & n-2 & n-1 & n-1 \\
n-1 & n-1 & n-2 & \cdots & 3 & 2 & 1
\end{array}\right)
\end{aligned}
$$

Suppose $G \in \mathcal{G}\left(h_{1}(n)\right)$. What does $H_{0}(n) \triangle G$ look like?

Switch in this representation: moves a vertex of the path or deletes/inserts a pair of adjacent vertices

PROOF OF RAPID MIXING FOR $k=1$; GEOMETRIC REPRESENTATION

$$
\left.\begin{array}{c}
h_{0}(n):=\left(\begin{array}{ccccccc}
1 & 2 & 3 & \cdots & n-2 & n-1 & n \\
n & n-1 & n-2 & \cdots & 3 & 2 & 1
\end{array}\right) \\
h_{1}(n):=\left(\begin{array}{cccccc}
1 & 2 & 3 & \cdots & n-2 & n-1 \\
n-1 & n-1 & n-2 & \cdots & 3 & 2
\end{array}\right. \\
n-1
\end{array}\right) .
$$

Suppose $G \in \mathcal{G}\left(h_{1}(n)\right)$. What does $H_{0}(n) \triangle G$ look like?

$$
H_{0}(n) \triangle G \text { is an } x \text {-monotone path! }
$$

Switch in this representation: moves a vertex of the path or deletes/inserts a pair of adjacent vertices

PROOF OF RAPID MIXING FOR $k=1$; GEOMETRIC REPRESENTATION

$$
\begin{aligned}
& h_{0}(n):=\left(\begin{array}{ccccccc}
1 & 2 & 3 & \cdots & n-2 & n-1 & n \\
n & n-1 & n-2 & \cdots & 3 & 2 & 1
\end{array}\right) \\
& h_{1}(n):=\left(\begin{array}{ccccccc}
1 & 2 & 3 & \cdots & n-2 & n-1 & n-1 \\
n-1 & n-1 & n-2 & \cdots & 3 & 2 & 1
\end{array}\right)
\end{aligned}
$$

Suppose $G \in \mathcal{G}\left(h_{1}(n)\right)$. What does $H_{0}(n) \triangle G$ look like?

$$
H_{0}(n) \triangle G \text { is an } x \text {-monotone path! }
$$

Switch in this representation: moves a vertex of the path or deletes/inserts a pair of adjacent vertices

The Jerrum-Sinclair method

Let Γ contain a switch sequence
$X=Z_{0}^{X, Y}, Z_{1}^{X, Y}, Z_{2}^{X, Y}, \ldots, Z_{\ell}^{X, Y}=Y$ for each pair of realizations
$X, Y \in \mathcal{G}(d)$.

Theorem (follows from Jerrum and Sinclair 1990)

$$
\tau_{\text {switch }}(\varepsilon) \leq \operatorname{poly}(n) \cdot \frac{\rho(\Gamma)}{|\mathcal{G}(d)|} \cdot \ell(\Gamma) \cdot\left(\log (|\mathcal{G}(d)|)+\log \left(\varepsilon^{-1}\right)\right)
$$

Switch sequence between $X, Y \in \mathcal{G}\left(h_{1}(n)\right)$

18/19

Switch sequence between $X, Y \in \mathcal{G}\left(h_{1}(n)\right)$

18/19

Switch sequence between $X, Y \in \mathcal{G}\left(h_{1}(n)\right)$

Switch sequence between $X, Y \in \mathcal{G}\left(h_{1}(n)\right)$

18/19

Switch sequence between $X, Y \in \mathcal{G}\left(h_{1}(n)\right)$

Switch sequence between $X, Y \in \mathcal{G}\left(h_{1}(n)\right)$

18/19

Switch sequence between $X, Y \in \mathcal{G}\left(h_{1}(n)\right)$

18/19

Switch sequence between $X, Y \in \mathcal{G}\left(h_{1}(n)\right)$

Switch sequence between $X, Y \in \mathcal{G}\left(h_{1}(n)\right)$

Switch sequence between $X, Y \in \mathcal{G}\left(h_{1}(n)\right)$

18/19

Switch sequence between $X, Y \in \mathcal{G}\left(h_{1}(n)\right)$

18/19

Switch sequence between $X, Y \in \mathcal{G}\left(h_{1}(n)\right)$

Switch sequence between $X, Y \in \mathcal{G}\left(h_{1}(n)\right)$

Switch sequence between $X, Y \in \mathcal{G}\left(h_{1}(n)\right)$

18/19

Switch sequence between $X, Y \in \mathcal{G}\left(h_{1}(n)\right)$

Switch sequence between $X, Y \in \mathcal{G}\left(h_{1}(n)\right)$

18/19

Switch sequence between $X, Y \in \mathcal{G}\left(h_{1}(n)\right)$

Switch sequence between $X, Y \in \mathcal{G}\left(h_{1}(n)\right)$

18/19

Switch sequence between $X, Y \in \mathcal{G}\left(h_{1}(n)\right)$

18/19

ESTIMATING THE LOAD

Clearly, $\ell(\Gamma)=\mathcal{O}(n)$.
From Z_{i} and L_{i} and a $\mathcal{O}(\log n)$ bits we can recover X and Y !
\Longrightarrow For a fix $Z \in \mathcal{G}(d)$, the number of switch sequences of Γ passing through Z is at most the number of possible L_{i} times poly (n) !
$\Longrightarrow \rho(\Gamma)=\operatorname{poly}(n) \cdot\left|\mathcal{G}\left(h_{1}(n)\right)\right| \stackrel{\text { Jerrum-Sinclair }}{\Longrightarrow}$ Switch MC is rapidly mixing on $\mathcal{G}\left(h_{1}(n)\right)$!

THANK YOU FOR LISTENING TO MY PRESENTATION!

HomePage: https://trm.hu

FULL PAPERS

UNIFIED APPROACH:
https://arxiv.org/abs/1903.06600
BEYOND P-STABILITY:
https://arxiv.org/abs/1909.02308

Proof outline of rapid mixing on P-STABLE degree sequences

- Jerrum-Sinclair for multicommodity-flows
- Determining a flow between any two $X, Y \in \mathcal{G}(d)$
- Decomposing $E(X) \Delta E(Y)$ into red/blue alternating circuits
- Decomposing alternating circuits into elementary circuits
- Processing elementary circuits
- Estimating the load of the flow
- Coding
- Reconstruction

THE JERRUM-SINCLAIR METHOD

Let f be a multicommodity-flow that sends 1 quantity of commodity between each two realizations in the switch graph on $\mathcal{G}(d)$.

Theorem (follows from Jerrum and Sinclair 1990)

$$
\tau_{\text {switch }}(\varepsilon) \leq n^{4} \cdot \max _{G \in \mathcal{G}(d)} \sum_{G \in \gamma} \frac{f(\gamma)|\gamma|}{|\mathcal{G}(d)|} \cdot\left(\log (|\mathcal{G}(d)|)+\log \left(\varepsilon^{-1}\right)\right)
$$

DeComposing the symmetric difference $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex $s \stackrel{\mathrm{bij} .}{\longleftrightarrow}$ an alternating-circuit decomposition
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Traverse each circuit W_{i} (from v_{1}) and cut off an alternating-circuit whenever a node is visited twice with the same parity (elementary alternating circuit)
- "Process" each elementary alternating circuit when found, while maintaining the matching s

DECOMPOSING THE SYMMETRIC DIFFERENCE $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex $s \stackrel{\text { bij. }}{\longleftrightarrow}$ an alternating-circuit decomposition
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Traverse each circuit W_{i} (from v_{1}) and cut off an alternating-circuit whenever a node is visited twice with the same parity (elementary alternating circuit)
- "Process" each elementary alternating circuit when found, while maintaining the matching s

Decomposing the symmetric difference $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex $s \stackrel{\mathrm{bij} .}{\longleftrightarrow}$ an alternating-circuit decomposition
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Traverse each circuit W_{i} (from v_{1}) and cut off an alternating-circuit whenever a node is visited twice with the same parity (elementary alternating circuit)
- "Process" each elementary alternating circuit when found, while maintaining the matching s

DECOMPOSING THE SYMMETRIC DIFFERENCE $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex $s \stackrel{\text { bij. }}{\longleftrightarrow}$ an alternating-circuit decomposition
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Traverse each circuit W_{i} (from v_{1}) and cut off an alternating-circuit whenever a node is visited twice with the same parity (elementary alternating circuit)
- "Process" each elementary alternating circuit when found, while maintaining the matching s

Decomposing the symmetric difference $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex $s \stackrel{\text { bij. }}{\longleftrightarrow}$ an alternating-circuit decomposition
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Traverse each circuit W_{i} (from v_{1}) and cut off an alternating-circuit whenever a node is visited twice with the same parity (elementary alternating circuit)
- "Process" each elementary alternating circuit when found, while maintaining the matching s

DECOMPOSING THE SYMMETRIC DIFFERENCE $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex $s \stackrel{\text { bij. }}{\longleftrightarrow}$ an alternating-circuit decomposition
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Traverse each circuit W_{i} (from v_{1}) and cut off an alternating-circuit whenever a node is visited twice with the same parity (elementary alternating circuit)
- "Process" each elementary alternating circuit when found, while maintaining the matching s

DECOMPOSING THE SYMMETRIC DIFFERENCE $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex $s \stackrel{\text { bij. }}{\longleftrightarrow}$ an alternating-circuit decomposition
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Traverse each circuit W_{i} (from v_{1}) and cut off an alternating-circuit whenever a node is visited twice with the same parity (elementary alternating circuit)
- "Process" each elementary alternating circuit when found, while maintaining the matching s

DECOMPOSING THE SYMMETRIC DIFFERENCE $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex $s \stackrel{\mathrm{bij} .}{\longleftrightarrow}$ an alternating-circuit decomposition
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Traverse each circuit W_{i} (from v_{1}) and cut off an alternating-circuit whenever a node is visited twice with the same parity (elementary alternating circuit)
- "Process" each elementary alternating circuit when found, while maintaining the matching s

DECOMPOSING THE SYMMETRIC DIFFERENCE $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex $s \stackrel{\mathrm{bij} .}{\longleftrightarrow}$ an alternating-circuit decomposition
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Traverse each circuit W_{i} (from v_{1}) and cut off an alternating-circuit whenever a node is visited twice with the same parity (elementary alternating circuit)
- "Process" each elementary alternating circuit when found, while maintaining the matching s

DECOMPOSING THE SYMMETRIC DIFFERENCE $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex $s \stackrel{\mathrm{bij} .}{\longleftrightarrow}$ an alternating-circuit decomposition
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Traverse each circuit W_{i} (from v_{1}) and cut off an alternating-circuit whenever a node is visited twice with the same parity (elementary alternating circuit)
- "Process" each elementary alternating circuit when found, while maintaining the matching s

DECOMPOSING THE SYMMETRIC DIFFERENCE $E(X) \Delta E(Y)$

- Let s be a complete matching between the red and blue edges at each vertex $s \stackrel{\text { bij. }}{\longleftrightarrow}$ an alternating-circuit decomposition
- Thus $E(X) \triangle E(Y)=W_{1} \uplus \ldots \uplus W_{k}$, where each W_{i} is an alternating-circuit
- Traverse each circuit W_{i} (from v_{1}) and cut off an alternating-circuit whenever a node is visited twice with the same parity (elementary alternating circuit)
- "Process" each elementary alternating circuit when found, while maintaining the matching s

Sweeping elementary alternating circuits

Elementary alternating circuit: each vertex on the trail is either visited once, or twice but with different parity

SWEEPING ELEMENTARY ALTERNATING CIRCUITS

Elementary alternating circuit: each vertex on the trail is either visited once, or twice but with different parity

Sweep: the edges are exchanged with non-edges and vica versa from x_{1} in counter-clockwise order

Sweeping elementary alternating circuits

Elementary alternating circuit: each vertex on the trail is either visited once, or twice but with different parity

Sweep: the edges are exchanged with non-edges and vica versa from x_{1} in counter-clockwise order

SWEEPING ELEMENTARY ALTERNATING CIRCUITS

Elementary alternating circuit: each vertex on the trail is either visited once, or twice but with different parity

Sweep: the edges are exchanged with non-edges and vica versa from x_{1} in counter-clockwise order

Sweeping elementary alternating circuits

Elementary alternating circuit: each vertex on the trail is either visited once, or twice but with different parity

Sweep: the edges are exchanged with non-edges and vica versa from x_{1} in counter-clockwise order

CODING AND RECONSTRUCTION

- Encoding of a realization Z along the $X \xrightarrow{s} Y$ path:

$$
L=A_{X}+A_{Y}-A_{Z}
$$

- From Z and L, we can reconstruct $X \Delta Y$, but cannot immediately tell which edges belong to X and Y
- Via a matching of edges and non-edges of Z supported by $X \Delta Y$ and a tricky theorem, we can reconstruct which edges belong to X and Y

